Олимпиадные задачи из источника «10 (1987)» для 10 класса

Дан выпуклый пятиугольник. Каждая диагональ отсекает от него треугольник. Докажите, что сумма площадей треугольников больше площади пятиугольника.

Докажите, что существует число, сумма цифр квадрата которого более, чем в 1000 раз превышает сумму цифр самого числа.

Какое максимальное число ладей можно расставить в кубе 8×8×8, чтобы они не били друг друга?

Известно, что некоторый многочлен в рациональных точках принимает рациональные значения.

Докажите, что все его коэффициенты рациональны.

В центре квадратного пруда плавает ученик. Внезапно к вершине квадрата подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать?

Брат и сестра делят треугольный торт так: он указывает точку на торте, а она проводит через эту точку прямолинейный разрез и выбирает себе кусок. Каждый хочет получить кусок как можно больше. Где брат должен поставить точку? Какую часть торта получит в этом случае каждый из них?

На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках?

На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что существует неостроугольный треугольник с вершинами в этих точках.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка