Олимпиадные задачи из источника «8 турнир (1986/1987 год)» для 7 класса
Двое играют на шахматной доске 8×8. Начинающий игру делает первый ход – ставит на доску коня. Затем они по очереди его передвигают (по обычным правилам), при этом нельзя ставить коня на поле, где он уже побывал. Проигравшим считается тот, кому некуда ходить. Кто выигрывает при правильной игре – начинающий или его партнёр?
Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиус не меньше ½.
В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
а) левом верхнем,
б) правом верхнем?
Автомат при опускании гривенника выбрасывает пять двушек, а при опускании двушки – пять гривенников.
Может ли Петя, подойдя к автомату с одной двушкой, получить после нескольких опусканий одинаковое количество двушек и гривенников?
Кафельная плитка имеет форму прямоугольного треугольника с катетами 1 дм и 2 дм. Можно ли из 20 таких плиток сложить квадрат?
Имеется два трёхлитровых сосуда. В одном 1 л воды, в другом – 1 л двухпроцентного раствора поваренной соли. Разрешается переливать любую часть жидкости из одного сосуда в другой, после чего перемешивать. Можно ли за несколько таких переливаний получить полуторапроцентный раствор в том сосуде, в котором вначале была вода?
Каждая клетка шахматной доски закрашена в один из цветов – синий или красный. Докажите, что клетки одного из цветов обладают тем свойством, что их может обойти шахматный ферзь (на клетках этого цвета ферзь может побывать не один раз, на клетки другого цвета он не ставится, но может через них перепрыгивать).
Двое играют в такую игру. Дана шоколадка с продольными и поперечными углублениями, по которым её можно ломать. Первый разламывает шоколадку по одной из линий, второй разламывает одну из частей, первый разламывает одну из трёх образовавшихся частей и т. д. Игра заканчивается в тот момент, когда в результате очередного хода возникнет долька, на которой уже нет углублений; сделавший этот ход выигрывает. На шоколадке 60 долек: имеется 5 продольных и 9 поперечных углублений. Кто выигрывает при правильной игре: начинающий или его партнёр?
Даны два двузначных числа – <i>X</i> и <i>Y</i>. Известно, что <i>X</i> вдвое больше <i>Y</i>, одна цифра числа <i>Y</i> равна сумме, а другая – разности цифр числа <i>X</i>.
Найти эти числа.