Олимпиадные задачи из источника «46 турнир (2024/2025 год)» - сложность 3 с решениями

Дан треугольник $ABC$. Пусть $CL$ — его биссектриса, $W$ — середина дуги $BCA$, а $P$ — проекция ортоцентра на медиану, проведённую из вершины $C$. Окружность $CPW$ пересекает прямую, проходящую через $C$ и параллельную $AB$, в точке $Q$. Докажите, что $LC=LQ$.

По кругу стоит 99 тарелок, на них лежат булочки (на тарелке может быть любое число булочек или вовсе их не быть). Известно, что на любых 20 подряд идущих тарелках лежит суммарно хотя бы $k$ булочек. При этом ни одну булочку ни с одной тарелки нельзя убрать так, чтобы это условие не нарушилось. Какое наибольшее суммарное число булочек может лежать на тарелках?

В трёхмерном координатном пространстве рассмотрим множество всех кубов с целочисленными координатами вершин. Докажите, что в этом множестве существует такое бесконечное подмножество $K$, что любые два разных куба из $K$ не имеют параллельных рёбер.

Пусть $A$ — набор из $n>1$ различных натуральных чисел. Для каждой пары чисел $a,b\in A$, где $a < b$, подсчитаем, сколько чисел в $A$ являются делителями числа $b-a$. Какое наибольшее значение может принимать сумма полученных $\frac{n(n-1)}2$ чисел?

Барон Мюнхгаузен утверждает, что существуют многочлен $f(x)$ с целыми коэффициентами и натуральные числа $m$ и $n$ со свойством: $f(m)$ не делится на $n$, но $f(p^k)$ делится на $n$ для любого простого $p$ и любого натурального $k$. Не ошибается ли барон?

В стране, валюта которой — тугрики, ходят только купюры двух целочисленных достоинств. И покупатель, и продавец имеют достаточно много и тех, и других купюр, но при каждом платеже могут использовать вместе не более $k$ купюр (включая сдачу). Известно, что так можно сделать платёж на любую целую сумму от 1 до $n$ тугриков. Каково наибольшее возможное $n$ (в зависимости от $k$)?

Хозяйка достала кусок мяса из холодильника, вокруг неё собрались котята. Раз в минуту хозяйка отрезает кусочек мяса и скармливает его одному из котят (на свой выбор), причём каждый кусочек должен составлять одну и ту же долю куска, от которого его отрезают. Через некоторое время хозяйка убирает остаток мяса в холодильник. Может ли хозяйка скормить котятам поровну мяса, если всего котят а) двое; б) трое?

Равносторонний треугольник разрезан на белые и чёрные треугольники. Известно, что все белые треугольники — прямоугольные и равны друг другу, а все чёрные — равнобедренные и тоже равны друг другу. Обязательно ли кратны $30^\circ$ все углы а) у белых треугольников; б) у чёрных треугольников?

Имеется 15 неразличимых на вид монет. Известно, что одна из них весит $1$ г, две — по $2$ г, три — по $3$ г, четыре — по $4$ г, пять — по $5$ г. На монетах есть соответствующие надписи с указанием масс. Как за два взвешивания на чашечных весах без гирь проверить, все ли надписи сделаны верно? (Не требуется определять, какие именно надписи верны, а какие нет.)

Даны $2N$ действительных чисел. Известно, что как ни разбей их на две группы по $N$ чисел, произведение чисел первой группы отличается от произведения чисел второй группы не более чем на $2$. Верно ли, что как ни расставь эти числа по кругу, найдутся два соседних числа, различающихся не более чем на $2$, если а) $N=50$; б) $N=25$?

В квадрате $2025 \times 2025$ отмечено несколько клеток. За один ход Кирилл может узнать количество отмеченных клеток в любом клетчатом квадрате со стороной меньше $2025$ внутри исходного квадрата. Какого наименьшего количества ходов точно хватит, чтобы узнать количество отмеченных клеток во всём квадрате?

На плоскости стояло ведро, верхнее основание больше нижнего. Ведро перевернули. Докажите, что площадь его видимой тени уменьшилась. (Ведро — это прямой круговой усечённый конус: его основания — два круга, лежащие в параллельных плоскостях, центры кругов лежат на прямой, перпендикулярной этим плоскостям. Видимая тень — это вся тень, кроме тени под ведром. Солнечные лучи считайте параллельными.)

Прямоугольная клетчатая доска покрашена в шахматном порядке в чёрный и белый цвета и разбита на доминошки $1\times 2$. Везде, где граничат по стороне горизонтальная и вертикальная доминошки, стоит дверка. Она покрашена в тот же цвет, что и примыкающая клетка той доминошки, которая примыкает короткой стороной. Обязательно ли белых дверок столько же, сколько чёрных?

По кругу стоят кувшины с соками, не обязательно одинакового размера. Из любого кувшина разрешается переливать любую часть сока (возможно, нисколько или весь сок) в соседний кувшин справа, так чтобы тот не переполнился и сладость смеси в нём стала равна $10%$. Известно, что в начальный момент такое переливание удалось бы сделать из любого кувшина. Докажите, что можно сделать в каком-то порядке несколько таких переливаний (не более одного из каждого кувшина), так чтобы сладость смеси во всех непустых кувшинах стала равна $10%$. (Сладость — это процент сахара в смеси, по весу. Сахар всегда равномерно распределён в кувшине.)

Существует ли такая бесконечная последовательность действительных чисел $a_1$, $a_2$, $a_3$, ..., что $a_1 = 1$ и для всех натуральных $k$ выполняется равенство $$a_k = a_{2k} + a_{3k} + a_{4k} + \ldots ?$$

Известно, что каждый прямоугольный параллелепипед обладает свойством: квадрат его объёма равен произведению площадей трёх его граней, имеющих общую вершину. А существует ли параллелепипед, который обладает этим же свойством, но не является прямоугольным?

Клетчатую доску $20\times 20$ разбили на двухклеточные доминошки. Докажите, что некоторая прямая содержит центры хотя бы десяти из этих доминошек.

Назовём ходы коня, при которых он смещается на две клетки по горизонтали и на одну по вертикали,<i>горизонтальными</i>, а остальные —<i>вертикальными</i>. Требуется поставить коня на одну из клеток доски $46\times46$, после чего чередовать им горизонтальные и вертикальные ходы. Докажите, что если запрещено посещать клетки более одного раза, то будет сделано не более 2024 ходов.

В остроугольном треугольнике $ABC$ отмечены точки $I$ и $O$ — центры вписанной и описанной окружностей соответственно. Прямые $AI$ и $CI$ вторично пересекают описанную окружность треугольника $ABC$ в точках $N$ и $M$. Отрезки $MN$ и $BO$ пересекаются в точке $X$. Докажите, что прямые $XI$ и $AC$ перпендикулярны.<img height="250" src="/storage/problem-media/67486/problem_67486_img_2.png">

Имеются чашечные весы без гирь и две кучи камней неизвестных масс, по 10 камней в каждой куче. Разрешается проводить сколько угодно взвешиваний, но на каждую чашу помещается не более 9 камней. Всегда ли можно узнать, какая из куч тяжелее, или установить равенство их масс?

Даны две треугольные пирамиды с общим основанием $ABC$. Их вершины $S$ и $R$ лежат по разные стороны от плоскости $ABC$. Все боковые рёбра одной пирамиды параллельны соответствующим боковым граням другой. Докажите, что объём одной пирамиды вдвое больше объёма другой.

Высоты $AA_1$, $BB_1$, $CC_1$ остроугольного треугольника $ABC$ пересекаются в точке $H$. Биссектриса угла $CBH$ пересекает отрезок $CH$ в точке $X$, биссектриса угла $BCH$ пересекает отрезок $BH$ в точке $Y$. Обозначим величину угла $XA_1Y$ через $\alpha$. Аналогично определим $\beta$ и $\gamma$. Найдите значение суммы $\alpha + \beta + \gamma$.<img height="250" src="/storage/problem-media/67454/problem_67454_img_2.png">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка