Олимпиадные задачи из источника «весенний тур, сложный вариант, 8-9 класс»
весенний тур, сложный вариант, 8-9 класс
НазадХозяйка достала кусок мяса из холодильника, вокруг неё собрались котята. Раз в минуту хозяйка отрезает кусочек мяса и скармливает его одному из котят (на свой выбор), причём каждый кусочек должен составлять одну и ту же долю куска, от которого его отрезают. Через некоторое время хозяйка убирает остаток мяса в холодильник. Может ли хозяйка скормить котятам поровну мяса, если всего котят а) двое; б) трое?
Равносторонний треугольник разрезан на белые и чёрные треугольники. Известно, что все белые треугольники — прямоугольные и равны друг другу, а все чёрные — равнобедренные и тоже равны друг другу. Обязательно ли кратны $30^\circ$ все углы а) у белых треугольников; б) у чёрных треугольников?
Имеется 15 неразличимых на вид монет. Известно, что одна из них весит $1$ г, две — по $2$ г, три — по $3$ г, четыре — по $4$ г, пять — по $5$ г. На монетах есть соответствующие надписи с указанием масс. Как за два взвешивания на чашечных весах без гирь проверить, все ли надписи сделаны верно? (Не требуется определять, какие именно надписи верны, а какие нет.)
Даны $2N$ действительных чисел. Известно, что как ни разбей их на две группы по $N$ чисел, произведение чисел первой группы отличается от произведения чисел второй группы не более чем на $2$. Верно ли, что как ни расставь эти числа по кругу, найдутся два соседних числа, различающихся не более чем на $2$, если а) $N=50$; б) $N=25$?
В квадрате $2025 \times 2025$ отмечено несколько клеток. За один ход Кирилл может узнать количество отмеченных клеток в любом клетчатом квадрате со стороной меньше $2025$ внутри исходного квадрата. Какого наименьшего количества ходов точно хватит, чтобы узнать количество отмеченных клеток во всём квадрате?
Учитель назвал две различные ненулевые цифры. Коля хочет составить делящееся на $7$ семизначное число, в десятичной записи которого нет других цифр, кроме этих двух. Всегда ли Коля может это сделать, какие бы две цифры ни назвал учитель?
В треугольнике $ABC$ с прямым углом $C$ провели высоту $CH$. Окружность, проходящая через точки $C$ и $H$, повторно пересекает отрезки $AC$, $CB$ и $BH$ в точках $Q$, $P$ и $R$ соответственно. Отрезки $HP$ и $CR$ пересекаются в точке $T$. Что больше: площадь треугольника $CPT$ или сумма площадей треугольников $CQH$ и $HTR$?<img src="/storage/problem-media/67451/problem_67451_img_2.png">