Олимпиадные задачи из источника «37 турнир (2015/2016 год)» для 10 класса - сложность 2 с решениями

Пусть <i>M</i> – середина основания <i>AC</i> равнобедренного треугольника <i>ABC</i>. На сторонах <i>AB</i> и <i>BC</i> отмечены соответственно точки <i>E</i> и <i>F</i> так, что  <i>AE ≠ CF</i>  и

∠<i>FMC</i> = ∠<i>MEF</i> = α.  Найдите  ∠<i>AEM</i>.

Дан квадрат со стороной 10. Разрежьте его на 100 равных четырёхугольников, каждый из которых вписан в окружность диаметра  <img align="absmiddle" src="/storage/problem-media/65727/problem_65727_img_2.gif">

Существуют ли такие целые числа<i>a</i>и<i>b</i>, что   а) уравнение  <i>x</i>² +<i>ax + b</i>= 0  не имеет корней, а уравнение  [<i>x</i>²] +<i>ax + b</i>= 0 имеет?   б) уравнение  <i>x</i>² + 2<i>ax + b</i>= 0  не имеет корней, а уравнение  [<i>x</i>²] + 2<i>ax + b</i>= 0  имеет?

Точку внутри выпуклого четырёхугольника соединили со всеми вершинами и с четырьмя точками на сторонах (по одной на стороне). Четырёхугольник оказался разделён на восемь треугольников с одинаковыми радиусами описанных окружностей. Докажите, что исходный четырёхугольник вписанный.

Существуют ли 2016 целых чисел, сумма и произведение которых равны 2016?

Все коэффициенты некоторого непостоянного многочлена целые и по модулю не превосходят 2015.

Докажите, что любой положительный корень этого многочлена больше чем <sup>1</sup>/<sub>2016</sub>.

Геометрическая прогрессия состоит из 37 натуральных чисел. Первый и последний члены прогрессии взаимно просты.

Докажите, что 19-й член прогрессии является 18-й степенью натурального числа.

Пусть <i>p</i> – простое число. Сколько существует таких натуральных <i>n</i>, что <i>pn</i> делится на  <i>p + n</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка