Олимпиадные задачи из источника «осенний тур, сложный вариант, 10-11 класс ()»
осенний тур, сложный вариант, 10-11 класс ()
НазадШеренга состоит из <i>N</i> ребят попарно различного роста. Её разбили на наименьшее возможное количество групп стоящих подряд ребят, в каждой из которых ребята стоят по возрастанию роста слева направо (возможны группы из одного человека). Потом в каждой группе переставили ребят по убыванию роста слева направо. Докажите, что после <i>N</i> – 1 такой операции ребята будут стоять по убыванию роста слева направо.
Арбуз имеет форму шара диаметра 20 см. Вася сделал длинным ножом три взаимно перпендикулярных плоских надреза глубиной <i>h</i> (надрез – это сегмент круга, <i>h</i> – высота сегмента, плоскости надрезов попарно перпендикулярны). Обязательно ли при этом арбуз разделится хотя бы на два куска, если
а) <i>h</i> = 17 см;
б) <i>h</i> = 18 см?
Дан вписанный четырёхугольник <i>АВСD</i>. Продолжения его противоположных сторон пересекаются в точках <i>P</i> и <i>Q</i>. Пусть <i>К</i> и <i>N</i> – середины диагоналей.
Докажите, что сумма углов <i>PKQ</i> и <i>PNQ</i> равна 180°.
Все коэффициенты некоторого непостоянного многочлена целые и по модулю не превосходят 2015.
Докажите, что любой положительный корень этого многочлена больше чем <sup>1</sup>/<sub>2016</sub>.
Дан клетчатый квадрат 10×10. Внутри него провели 80 единичных отрезков по линиям сетки, которые разбили квадрат на 20 многоугольников равной площади. Докажите, что все эти многоугольники равны.
Геометрическая прогрессия состоит из 37 натуральных чисел. Первый и последний члены прогрессии взаимно просты.
Докажите, что 19-й член прогрессии является 18-й степенью натурального числа.
Петя увидел на доске несколько различных чисел и решил составить выражение, среди значений которого все эти числа есть, а других нет. Составляя выражение, Петя может использовать какие угодно числа, особый знак "±", а также обычные знаки "+", "–", "×" и скобки. Значения составленного выражения он вычисляет, выбирая для каждого знака "±" либо "+", либо "–" во всех возможных комбинациях. Например, если на доске были числа 4 и 6, подойдёт выражение 5 ± 1, а если на доске были числа 1, 2 и 3, то подойдёт выражение (2 ± 0,5) ± 0,5. Возможно ли составить необходимое выражение, если на доске были написаны
а) числа 1, 2, 4;
б) любые 100 различных действительных чисел?