Олимпиадные задачи из источника «осенний тур, сложный вариант, 10-11 класс»
осенний тур, сложный вариант, 10-11 класс
НазадНа плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.)
Существуют ли такие две функции <i>f</i> и <i>g</i>, принимающие только целые значения, что для любого целого <i>x</i> выполнены соотношения:
а) <i>f</i>(<i>f</i>(<i>x</i>)) = <i>x, g</i>(<i>g</i>(<i>x</i>)) = <i>x, f</i>(<i>g</i>(<i>x</i>)) > <i>x, g</i>(<i>f</i>(<i>x</i>)) > <i>x</i>?
б) <i>f</i>(<i>f</i>(<i>x</i>)) < <i>x, g</i>(<i>g</i>(<i>x</i>)) < <i>x</i>, <i>f</i>(<i>g</i>(<i>x</i>)) > <i>x, g</i>(<i>f</i>(<i>x&...
Петя и Вася играют в такую игру. Сначала на столе лежит 11 кучек по 10 камней. Игроки ходят по очереди, начинает Петя. Каждым ходом игрок берёт 1, 2 или 3 камня, но Петя каждый раз выбирает все камни из любой одной кучки, а Вася всегда выбирает все камни из разных кучек (если их больше одного). Проигрывает тот, кто не может сделать ход. Кто из игроков может обеспечить себе победу, как бы ни играл его соперник?
Петя нарисовал на плоскости квадрат, разделил на 64 одинаковых квадратика и раскрасил их в шахматном порядке в чёрный и белый цвета. После этого он загадал точку, находящуюся строго внутри одного из этих квадратиков. Вася может начертить на плоскости любую замкнутую ломаную без самопересечений и получить ответ на вопрос, находится ли загаданная точка строго внутри ломаной или нет. За какое наименьшее количество таких вопросов Вася может узнать, какого цвета загаданная точка – белого или чёрного?
Дан правильный треугольник <i>ABC</i> с центром <i>O</i>. Прямая, проходящая через вершину <i>C</i>, пересекает описанную окружность треугольника <i>AOB</i> в точках <i>D</i> и <i>E</i>. Докажите, что точки <i>A, O</i> и середины отрезков <i>BD, BE</i> лежат на одной окружности.
Каждое ли целое число можно записать как сумму кубов нескольких целых чисел, среди которых нет одинаковых?
Найдите все <i>n</i>, при которых для любых двух многочленов <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) степени <i>n</i> найдутся такие одночлены <i>ax<sup>k</sup></i> и <i>bx<sup>l</sup></i>
(0 ≤ <i>k ≤ n</i>, 0 ≤ <i>l ≤ n</i>), что графики многочленов <i>P</i>(<i>x</i>) + <i>ax<sup>k</sup></i> и <i>Q</i>(<i>x</i>) + <i>bx<sup>l</sup></i> не будут иметь общих точек.