Олимпиадные задачи из источника «34 турнир (2012/2013 год)» для 7 класса

Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.

Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.

Из любого ли натурального числа <i>A</i> при помощи таких операций можно получить число <i>A</i> + 1?

(Если стирается единица в самом начале числа, а за ней сразу идут нули, то эти нули тоже стираются.)

На плоскости даны шесть точек. Известно, что их можно разбить на две тройки так, что получатся два треугольника. Всегда ли можно разбить эти точки на две тройки так, чтобы получились два треугольника, которые не имеют друг с другом никаких общих точек (ни внутри, ни на границе)?

Будем называть точку плоскости <i>узлом</i>, если обе её координаты – целые числа. Внутри некоторого треугольника с вершинами в узлах лежит ровно два узла (возможно, какие-то еще узлы лежат на его сторонах). Докажите, что прямая, проходящая через эти два узла, либо проходит через одну из вершин треугольника, либо параллельна одной из его сторон.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка