Олимпиадные задачи из источника «осенний тур, сложный вариант, 10-11 класс» - сложность 2 с решениями

В треугольнике <i>ABC</i> точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – основания высот из вершин <i>A, B, C</i>, точки <i>C<sub>А</sub></i> и <i>C<sub>В</sub></i> – проекции <i>C</i><sub>1</sub> на <i>AC</i> и <i>BC</i> соответственно.

Докажите, что прямая <i>C<sub>А</sub>C<sub>В</sub></i> делит пополам отрезки <i>C</i><sub>1</sub><i>A</i><sub>1</sub> и <i>C</i><sub>1</sub><i>B</i><sub>1</sub>.

Петя отметил на плоскости несколько (больше двух) точек, все расстояния между которыми различны. Пару отмеченных точек  (<i>A, B</i>)  назовём <i>необычной</i>, если <i>A</i> – самая дальняя от <i>B</i> отмеченная точка, а <i>B</i> – ближайшая к <i>A</i> отмеченная точка (не считая самой точки <i>A</i>). Какое наибольшее возможное количество необычных пар могло получиться у Пети?

Известно, что  0 < <i>a, b, c, d</i> < 1  и  <i>abcd</i> = (1 – <i>a</i>)(1 – <i>b</i>)(1 – <i>c</i>)(1 – <i>d</i>).  Докажите, что   (<i>a + b + c + d</i>) – (<i>a + c</i>)(<i>b + d</i>) ≥ 1.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка