Олимпиадные задачи из источника «осенний тур, сложный вариант, 10-11 класс»
осенний тур, сложный вариант, 10-11 класс
НазадПеред Алёшей 100 закрытых коробочек, в каждой – либо красный, либо синий кубик. У Алёши на счету есть рубль. Он подходит к любой закрытой коробочке, объявляет цвет и ставит любую сумму (можно нецелое число копеек, но не больше, чем у него на счету в данный момент). Коробочка открывается, и Алёшин счет увеличивается или уменьшается на поставленную сумму в зависимости от того, угадан или не угадан цвет кубика. Игра продолжается, пока не будут открыты все все коробочки. Какую наибольшую сумму на счету может гарантировать себе Алёша, если ему известно, что
a) синий кубик только один;
б) синих кубиков ровно <i>n</i>.
(Алёша может поставить и 0, то есть просто бесплатно открыть коробочку и увидеть цвет кубика.)
На плоскости нарисованы два выпуклых многоугольника <i>P</i> и <i>Q</i>. Для каждой стороны многоугольника <i>P</i> многоугольник <i>Q</i> можно зажать между двумя прямыми, параллельными этой стороне. Обозначим через <i>h</i> расстояние между этими прямыми, а через <i>l</i> – длину стороны и вычислим произведение <i>lh</i>. Просуммировав такие произведения по всем сторонам <i>P</i>, получим некоторую величину (<i>P, Q</i>). Докажите, что (<i>P, Q</i>) = (<i>Q, P</i>).
Фокуснику завязывают глаза, а зритель выкладывает в ряд <i>N</i> одинаковых монет, сам выбирая, какие – орлом вверх, а какие – решкой. Ассистент фокусника просит зрителя написать на листе бумаги любое целое число от 1 до <i>N</i> и показать его всем присутствующим. Увидев число, ассистент указывает зрителю на одну из монет ряда и просит перевернуть её. Затем фокуснику развязывают глаза, он смотрит на ряд монет и безошибочно определяет написанное зрителем число.
a) Докажите, что если у фокусника с ассистентом есть способы, позволяющие фокуснику гарантированно отгадывать число для <i>N = a</i> и для <i>N = b</i>, то есть способ и для <i>N = ab</i>.
б) Найдите все значения <i>N</i>, для которых у фокусника...
Найдите все возрастающие арифметические прогрессии с конечным числом членов, сумма которых равна 1, а каждый член имеет вид <sup>1</sup>/<sub><i>k</i></sub>, где <i>k</i> натуральное.
Диагонали вписанного четырёхугольника <i>ABCD</i> пересекаются в точке <i>P</i>. Пусть <i>K, L, M, N</i> – середины соответственно сторон <i>AB, BC, CD, AD</i>.
Докажите, что радиусы описанных окружностей треугольников <i>PKL, PLM, PMN</i> и <i>PNK</i> равны.
Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. <i>Моментом</i> гири называется произведение <i>ms</i> массы гири <i>m</i> на расстояние <i>s</i> он нее до середины отрезка.)
a) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны. б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа?