Олимпиадные задачи из источника «весенний тур, основной вариант, 10-11 класс» для 6-9 класса - сложность 2-4 с решениями
весенний тур, основной вариант, 10-11 класс
НазадВ остроугольном треугольнике <i>ABC</i> проведены высоты <i>AH<sub>A</sub>, BH<sub>B</sub></i> и <i>CH<sub>C</sub></i>.
Докажите, что треугольник с вершинами в ортоцентрах треугольников <i>AH<sub>B</sub>H<sub>C</sub>, BH<sub>A</sub>H<sub>C</sub></i> и <i>CH<sub>A</sub>H<sub>B</sub></i> равен треугольнику <i>H<sub>A</sub>H<sub>B</sub>H<sub>C</sub></i>.
По кругу расставлено несколько коробочек. В каждой из них может лежать один или несколько шариков (или она может быть пустой). За один ход разрешается взять все шарики из любой коробочки и разложить их, двигаясь по часовой стрелке, начиная со следующей коробочки, кладя в каждую коробочку по одному шарику.
а) Докажите, что если на каждом следующем ходе шарики берут из той коробочки, в которую попал последний шарик на предыдущем ходе, то в какой-то момент повторится начальное размещение шариков.
б) Докажите, что за несколько ходов из любого начального размещения шариков по коробочкам можно получить любое другое.
Приведите пример многочлена <i>P</i>(<i>x</i>) степени 2001, для которого <i>P</i>(<i>x</i>) + <i>P</i>(1 – <i>x</i>) ≡ 1.
Участники шахматного турнира сыграли друг с другом по одной партии. Для каждого участника <i>A</i> было подсчитано число набранных им очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков) и <i>коэффициент силы</i> по формуле: сумма очков тех участников, у кого <i>A</i> выиграл, минус сумма очков тех, кому он проиграл.
а) Могут ли коэффициенты силы всех участников быть больше 0?
б) Могут ли коэффициенты силы всех участников быть меньше 0?
В школе (где училось больше 5 учеников) подвели итоги учебного года. Выяснилось, что в каждом множестве из пяти и более учеников не менее 80% двоек, полученных этими учениками в течение года, поставлены не более чем 20% процентам учеников из этого множества. Докажите, что по крайней мере три четверти всех двоек, поставленных в школе, получил один ученик.