Олимпиадные задачи из источника «весенний тур, основной вариант, 10-11 класс» - сложность 2 с решениями
весенний тур, основной вариант, 10-11 класс
НазадНайдите все пары целых чисел (<i>x, y</i>), для которых числа <i>x</i>³ + <i>y</i> и <i>x + y</i>³ делятся на <i>x</i>² + <i>y</i>².
Четырёхугольник <i>ABCD</i> вписан в окружность с центром <i>O</i>. Описанные окружности треугольников <i>ABO</i> и <i>CDO</i>, пересеклись второй раз в точке <i>F</i>. Докажите, что описанная окружность треугольника <i>AFD</i> проходит через точку <i>E</i> пересечения отрезков <i>AC</i> и <i>BD</i>.
В море плавает предмет, имеющий форму выпуклого многогранника.
Может ли случиться, что 90% его объёма находится ниже уровня воды и при этом больше половины его поверхности находится выше уровня воды?