Олимпиадные задачи из источника «16 турнир (1994/1995 год)» для 11 класса - сложность 2 с решениями
16 турнир (1994/1995 год)
НазадПри каких <i>n</i> можно раскрасить в три цвета все ребра <i>n</i>-угольной призмы (основания – <i>n</i>-угольники) так, что в каждой вершине сходятся все три цвета и у каждой грани (включая основания) есть стороны всех трёх цветов?
Покажите, как разбить пространство
а) на одинаковые тетраэдры,
б) на одинаковые равногранные тетраэдры
(тетраэдр называется <i>равногранным</i>, если все его грани – равные треугольники).
Коэффициенты квадратного уравнения <i>x</i>² + <i>px + q</i> = 0 изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?