Олимпиадные задачи из источника «1 турнир (1980 год)» для 9 класса

В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.

  Дан выпуклый четырёхугольник <i>ABCD</i>. Каждая его сторона разбита на <i>k</i> равных частей. Точки деления, принадлежащие стороне <i>AB</i>, соединены прямыми с точками деления, принадлежащими стороне <i>CD</i>, так что первая, считая от <i>A</i>, точка деления соединена с первой точкой деления, считая от <i>D</i>, вторая, считая от <i>A</i>, – со второй, считая от <i>D</i>, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне <i>BC</i>, аналогичным образом соединены с точками деления, принадлежащими стороне <i>DA</i> (вторая серия прямых). Образовалось <i>k</i>² маленьких четырёхугольников. Из них выбрано <i>k</i> четырёхуго...

<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>101</sub>  – такая перестановка чисел  2, 3, ..., 102,  что <i>a</i><sub><i>k</i></sub> делится на <i>k</i> при каждом <i>k</i>. Найти все такие перестановки.

В таблице <i>N</i>×<i>N</i>, заполненной числами, все строки различны (две строки называются различными, если они отличаются хотя бы в одном элементе).

Докажите, что из таблицы можно вычеркнуть некоторый столбец так, что в оставшейся таблице опять все строки будут различны.

На окружности имеются синие и красные точки. Разрешается добавить красную точку и поменять цвета её соседей, а также убрать красную точку и изменить цвета её бывших соседей. Пусть первоначально было всего две красные точки (менее двух точек оставлять не разрешается). Доказать, что за несколько разрешённых операций нельзя получить картину, состоящую из двух синих точек.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка