Олимпиадные задачи из источника «Заочный тур» - сложность 3 с решениями
Заочный тур
НазадВ пирамиде $SABC$ все углы при вершине $S$ прямые. Точки $A'$, $B'$, $C'$ на ребрах $SA$, $SB$, $SC$ соответственно таковы, что треугольники $ABC$ и $A'B'C'$ подобны. Верно ли, что плоскости $ABC$ и $A'B'C'$ параллельны?
По окружности $\Omega$ движется точка $P$. На окружности $\Omega$ зафиксированы точки $A$ и $B$. Точка $C$ – произвольная точка внутри круга с границей $\Omega$. Общие внешние касательные к окружностям, описанным около треугольников $APC$ и $BCP$, пересекаются в точке $Q$. Докажите, что все точки $Q$ лежат на двух фиксированных прямых.
Дан отрезок $AB$. Пусть $C$ – произвольная точка на серединном перпендикуляре к $AB$; $O$ – точка на описанной окружности треугольника $ABC$, противоположная $C$; эллипс с центром $O$ касается прямых $AB$, $BC$, $CA$. Найдите геометрическое место точек касания эллипса с прямой $BC$.
Через вершины $A$, $B$, $C$ треугольника $ABC$ провели прямые $a_1, b_1, c_1$ соответственно. Отразим $a_1$, $b_1$, $c_1$ относительно биссектрис соответствующих углов треугольника $ABC$, получив $a_2$, $b_2$, $c_2$. Пусть $A_1=b_1\cap c_1$, $B_1=a_1\cap c_1$, $C_1=a_1\cap b_1$, аналогично определим $A_2$, $B_2$, $C_2$. Докажите, что у треугольников $A_1B_1C_1$ и $A_2B_2C_2$ одинаковое отношение площади к радиусу описанной окружности (т.е. $\frac{S_1}{R_1}=\frac{S_2}{R_2}$, где $S_i=S(\triangle A_iB_iC_i)$, $R_i=R(\triangle A_iB_iC_i)$).
На плоскости начерчены треугольник $ABC$, описанная около него окружность и центр $I$ его вписанной окружности. Пользуясь только линейкой, постройте центр описанной окружности.
Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $I_a$ – центр вневписанной окружности, соответствующей вершине $A$; $I'_a$ – точка, симметричная $I_a$ относительно прямой $AA_1$. Аналогично построим точки $I'_b$, $I'_c$. Докажите, что прямые $A_1I'_a$, $B_1I'_b$, $C_1I'_c$ пересекаются в одной точке.
Окружность $\omega$, вписанная в неравнобедренный треугольник $ABC$, касается его сторон $BC, CA$ и $AB$ в точках $D, E$ и $F$ соответственно. Точка $M$ на луче $EF$ такова, что $EM = AB$. Точка $N$ на луче $FE$ такова, что $FN = AC$. Окружности $BFM$ и $CEN$ повторно пересекают $\omega$ в точках $S$ и $T$ соответственно. Докажите, что прямые $BS, CT$ и $AD$ пересекаются в одной точке.
Разность двух углов треугольника больше $90^{\circ}$. Докажите, что отношение радиусов его описанной и вписанной окружностей больше 4.
Верно ли, что любой многоугольник можно разрезать на равнобокие трапеции?
Биссектрисы $AA_1$, $CC_1$ треугольника $ABC$, в котором $\angle B=60^{\circ}$, пересекаются в точке $I$. Описанные окружности треугольников $ABC$, $A_1IC_1$ пересекаются в точке $P$. Докажите, что прямая $PI$ проходит через середину стороны $AC$.
В треугольнике $ABC$ точки $M$, $N$ – середины сторон $AB$, $AC$ соответственно; серединный перпендикуляр к биссектрисе $AL$ пересекает биссектрисы углов $B$ и $C$ в точках $P$, $Q$ соответственно. Докажите, что прямые $PM$ и $QN$ пересекаются на касательной к описанной окружности треугольника $ABC$ в точке $A$.
В трапецию $ABCD$ ($AD\parallel BC$) вписана окружность $\omega$, которая касается сторон $AB$, $BC$, $CD$ и $AD$ в точках $P$, $Q$, $R$, $S$ соответственно. Прямая, проходящая через точку $P$ параллельно основаниям трапеции, пересекает прямую $QR$ в точке $X$. Докажите, что прямые $AB$, $QS$ и $DX$ пересекаются в одной точке.
Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.
Даны окружность $\omega$ и точки $A$ и $B$ на ней. Пусть $C$ – произвольная точка на одной из дуг $AB$ этой окружности, $CL$ – биссектриса треугольника $ABC$, окружность $BCL$ пересекает $AC$ в $E$, а $CL$ пересекает $BE$ в $F$. Найдите геометрическое место центров окружностей $AFC$.