Олимпиадные задачи из источника «2009 год» - сложность 3 с решениями
На дне рождения у Васи было 10 ребят (включая Васю). Оказалось, что у каждых двух из этих ребят есть общий дедушка.
Докажите, что у семи из них есть общий дедушка.
В течение92дней авиакомпания ежедневно выполняла по десять рейсов. За день каждый самолет выполнял не более одного рейса. Известно, что для любой пары дней найдется один и только один самолет, летавший в оба эти дня. Докажите, что есть самолет, летавший каждый день.
Какое наименьшее количество трехклеточных уголков можно разместить в квадрате8<i>× </i>8так, чтобы в этот квадрат больше нельзя было поместить ни одного такого уголка?
Докажите, что если выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_2.gif"> </i>принимает рациональное значение, то и выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_3.gif"> </i>также принимает рациональное значение.
Укажите точки на поверхности куба, из которых диагональ куба видна под наименьшим углом.
В равнобедренном треугольнике <i>ABC</i> с основанием <i>AB</i> проведена биссектриса <i>BD</i>. На прямой <i>AB</i> взята точка <i>E</i> так, что ∠<i>EDB</i> = 90°.
Найдите <i>BE</i>, если <i>AD</i> = 1.