Олимпиадные задачи из источника «8 класс» - сложность 2-4 с решениями
8 класс
НазадВ треугольнике <i>ABC</i> провели биссектрисы углов <i>A</i> и <i>C</i>. Точки <i>P</i> и <i>Q</i> – основания перпендикуляров, опущенных из вершины <i>B</i> на эти биссектрисы. Докажите, что отрезок <i>PQ</i> параллелен стороне <i>AC</i>.
На клетчатой бумаге нарисован прямоугольник 5x9. В левом нижнем углу стоит фишка. Коля и Серёжа по очереди передвигают ее на любое количество клеток либо вправо, либо вверх. Первым ходит Коля. Выигрывает тот, кто поставит фишку в правый верхний. Кто выигрывает при правильной игре?
Маша задумала натуральное число и нашла его остатки при делении на 3, 6 и 9. Сумма этих остатков оказалась равна 15.
Найдите остаток от деления задуманного числа на 18.
Боковая сторона трапеции равна одному основанию и вдвое меньше другого.
Докажите, что вторая боковая сторона перпендикулярна одной из диагоналей трапеции.