Олимпиадные задачи из источника «07 (2009 год)» для 2-9 класса

Фиксированы две окружности <i>w</i><sub>1</sub> и <i>w</i><sub>2</sub>, одна их внешняя касательная <i>l</i> и одна их внутренняя касательная <i>m</i>. На прямой <i>m</i> выбирается точка <i>X</i>, а на прямой <i>L</i> строятся точки <i>Y</i> и <i>Z</i> так, что <i>XY</i> и <i>XZ</i> касаются <i>w</i><sub>1</sub> и <i>w</i><sub>2</sub> соответственно, а треугольник <i>XYZ</i> содержит окружности <i>w</i><sub>1</sub> и <i>w</i><sub>2</sub>. Докажите, что центры окружностей, вписанных в треугольники <i>XYZ</i>, лежат...

В некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой?

Постройте треугольник по стороне, радиусу вписанной окружности и радиусу вневписанной окружности, касающейся этой стороны. (<i>Исследование проводить не требуется.</i>)

В треугольнике <i>ABC  AA</i><sub>1</sub> и <i>BB</i><sub>1</sub> – высоты. На стороне <i>AB</i> выбраны точки <i>M</i> и <i>K</i> так, что  <i>B</i><sub>1</sub><i>K || BC</i>  и  <i>MA</i><sub>1</sub> || <i>AC</i>.  Докажите, что  ∠<i>AA</i><sub>1</sub><i>K</i> = ∠<i>BB</i><sub>1</sub><i>M</i>.

Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата.

На рисунке изображен параллелограмм и отмечена точка <i>P</i> пересечения его диагоналей. Проведите через <i>P</i> прямую так, чтобы она разбила параллелограмм на две части, из которых можно сложить ромб.<div align="center"><img src="/storage/problem-media/116078/problem_116078_img_2.png"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка