Олимпиадные задачи из источника «2010/11» для 2-7 класса - сложность 1 с решениями

Дан квадрат <i>ABCD</i>. На стороне <i>AD</i> внутрь квадрата построен равносторонний треугольник <i>ADE</i>. Диагональ <i>AC</i> пересекает сторону <i>ED</i> этого треугольника в точке <i>F</i>. Докажите, что  <i>CE = CF</i>.

Можно ли в клетки квадрата 10×10 поставить некоторое количество звёздочек так, чтобы в каждом квадрате 2×2 было ровно две звёздочки, а в каждом прямоугольнике 3×1 – ровно одна звёздочка? (В каждой клетке может стоять не более одной звёздочки.)

Из четырёх неравенств  2<i>x</i> > 70,  <i>x</i> < 100,  4<i>x</i> > 25  и  <i>x</i> > 5  два истинны и два ложны. Найдите значение <i>x</i>, если известно, что оно целое.

Найдите все пары простых чисел, разность квадратов которых является простым числом.

В окружности провели диаметр <i>AB</i> и параллельную ему хорду <i>CD</i>, так, что расстояние между ними равно половине радиуса этой окружности (см. рис.). Найдите угол <i>CAB</i>.<div align="center"><img src="/storage/problem-media/116143/problem_116143_img_2.gif"></div>

В стаде, состоящем из лошадей, двугорбых и одногорбых верблюдов, в общей сложности 200 горбов.

Сколько животных в стаде, если количество лошадей равно количеству двугорбых верблюдов? .

На доске записаны числа 1, 2<sup>1</sup>, 2², 2³, 2<sup>4</sup>, 2<sup>5</sup>. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.

Может ли на доске в результате нескольких таких операций остаться только число 15?

10 друзей послали друг другу праздничные открытки, так что каждый послал пять открыток.

Докажите, что найдутся двое, которые послали открытки друг другу.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка