Олимпиадные задачи из источника «9 класс» - сложность 2 с решениями
9 класс
НазадДокажите, что среди чисел вида 19991999...19990...0 найдётся хотя бы одно, которое делится на 2001.
Про квадратный трехчлен <i>f</i>(<i>x</i>) = <i>ax</i>² – <i>ax</i> + 1 известно, что | <i>f</i>(<i>x</i>)| ≤ 1 при 0 ≤ <i>x</i> ≤ 1. Найдите наибольшее возможное значение <i>а</i>.
Корни уравнения <i>x</i>² + <i>ax</i> + 1 = <i>b</i> – целые, отличные от нуля числа. Докажите, что число <i>a</i>² + <i>b</i>² является составным.
Диагонали равнобокой трапеции<i>АВСD</i>с боковой стороной<i>АВ</i>пересекаются в точке<i>Р</i>. Верно ли, что центр окружности, описанной около трапеции, лежит на окружности, описанной около треугольника<i>ABP</i>?
Докажите, что если каждое из двух чисел является суммой квадратов двух целых чисел, то и их произведение является суммой квадратов двух целых чисел.
Квадратный трехчлен <i>y</i> = <i>ax</i>² + <i>bx + c</i> не имеет корней и <i>а + b + c</i> > 0. Найдите знак коэффициента <i>с</i>.
В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?