Олимпиадные задачи из источника «2005 год» - сложность 2 с решениями

Числа<i>a</i>и<i>b</i>таковы, что первое уравнение системы <table align="center" border="0"> <tr> <td rowspan="2" valign="middle"><font size="+5">{</font></td> <td>cos <i>x</i>=<i>ax</i>+<i>b</i></td></tr> <tr><td>sin <i>x</i>+<i>a</i>=0</td></tr> </table> имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.

Числа<i>a</i>и<i>b</i>таковы, что первое уравнение системы <table align="center" border="0"> <tr> <td rowspan="2" valign="middle"><font size="+5">{</font></td> <td>sin <i>x</i>+<i>a</i>=<i>bx</i></td></tr> <tr><td>cos <i>x</i>=<i>b</i></td></tr> </table> имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.

Дана последовательность  <i>a<sub>n</sub></i> = 1 + 2<sup><i>n</i></sup> + ... + 5<sup><i>n</i></sup>.  Существуют ли пять идущих подряд её членов, кратных 2005?

Существует ли 2005 таких различных натуральных чисел, что сумма любых 2004 из них делится на оставшееся число?

Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.

Докажите, что можно выбрать по одному корню каждого из них так, чтобы их сумма равнялась сумме оставшихся корней.

По кругу расставлены 2005 натуральных чисел.

Доказать, что найдутся два соседних числа, после выкидывания которых оставшиеся числа нельзя разбить на две группы с равной суммой.

Высоты <i>AA'</i> и <i>BB'</i> треугольника <i>ABC</i> пересекаются в точке <i>H</i>. Точки <i>X</i> и <i>Y</i> – середины отрезков <i>AB</i> и <i>CH</i> соответственно.

Доказать, что прямые <i>XY</i> и <i>A'B'</i> перпендикулярны.

Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка