Олимпиадные задачи из источника «1999 год» для 2-7 класса

На доске в лаборатории написаны два числа. Каждый день старший научный сотрудник Петя стирает с доски оба числа и пишет вместо них их среднее арифметическое и среднее гармоническое. Утром первого дня на доске были написаны числа 1 и 2. Найдите произведение чисел, записанных на доске вечером 1999-го дня.

В шахматном турнире каждый участник сыграл с каждым из остальных две партии: одну белыми фигурами, другую – чёрными. По окончании турнира оказалось, что все участники набрали одинаковое количество очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков). Докажите, что найдутся два участника, выигравшие одинаковое число партий белыми.

Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.

Какую максимальную сумму Петя может снять со счета, если других денег у него нет?

Найдите какие-нибудь четыре попарно различных натуральных числа <i>a, b, c, d</i>, для которых числа  <i>a</i>² + 2<i>cd + b</i>²  и  <i>c</i>² + 2<i>ab + d</i>²  являются полными квадратами.

Покажите как любой четырехугольник разрезать на три трапеции (параллелограмм тоже можно считать трапецией).

Сравнив дроби  <sup>111110</sup>/<sub>111111</sub>,  <sup>222221</sup>/<sub>222223</sub>,  <sup>333331</sup>/<sub>333334</sub>,  расположите их в порядке возрастания.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка