Олимпиадные задачи из источника «1993 год» для 9 класса - сложность 3 с решениями
Дан выпуклый четырёхугольник<i> ABMC </i>, в котором<i> AB=BC </i>,<i> <img src="/storage/problem-media/108679/problem_108679_img_2.gif"> BAM = </i>30<i><sup>o</sup> </i>,<i> <img src="/storage/problem-media/108679/problem_108679_img_2.gif"> ACM= </i>150<i><sup>o</sup> </i>. Докажите, что<i> AM </i>– биссектриса угла<i> BMC </i>.
а) Известно, что область определения функции <i>f</i>(<i>x</i>) – отрезок [–1, 1] и <i>f</i>(<i>f</i>(<i>x</i>)) = – <i>x</i> при всех <i>x</i>, а её график является объединением конечного числа точек и интервалов. Нарисовать график такой функции <i>f</i>(<i>x</i>). б) Можно ли это сделать, если область определения функции – интервал (–1, 1)? Вся числовая ось?
Даны <i>n</i> точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно непараллельных прямых может быть среди них?
Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)
На стороне <i>AB</i> треугольника <i>ABC</i> внешним образом построен квадрат с центром <i>O</i>. Точки <i>M</i> и <i>N</i> середины сторон <i>AC</i> и <i>BC</i> соответственно, а длины этих сторон равны соответственно <i>a</i> и <i>b</i>. Найти максимум суммы <i>OM + ON</i>, когда угол <i>ACB</i> меняется.
Дед барона К.Ф.И. фон Мюнхгаузена построил квадратный замок, разделил его на 9 квадратных залов и в центральном разместил арсенал. Отец барона разделил каждый из восьми оставшихся залов на 9 равных квадратных холлов и во всех центральных холлах устроил зимние сады. Сам барон разделил каждый из 64 свободных холлов на 9 равных квадратных комнат и в каждой из центральных комнат устроил бассейн, а остальные сделал жилыми. Барон хвастается, что ему удалось обойти все жилые комнаты, побывав в каждой по одному разу, и вернуться в исходную (в каждой стене между двумя соседними жилыми комнатами проделана дверь). Могут ли слова барона быть правдой?
Каждой паре чисел <i>x</i> и <i>y</i> поставлено в соответствие некоторое число <i>x</i><i>y</i>. Найдите 19931935, если известно, что для любых трёх чисел <i>x, y, z</i> выполнены тождества: <i>x</i><i>x</i> = 0 и <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i><i>y</i>) + <i>z</i>.
У Пети всего 28 одноклассников. У каждых двух из 28 различное число друзей в этом классе. Сколько друзей у Пети?
Найдите <i>x</i><sub>1000</sub>, если <i>x</i><sub>1</sub> = 4, <i>x</i><sub>2</sub> = 6, и при любом натуральном <i>n</i> ≥ 3 <i>x<sub>n</sub></i> – наименьшее составное число, большее 2<i>x</i><sub><i>n</i>–1</sub> – <i>x</i><sub><i>n</i>–2</sub>.
Существует ли конечное слово из букв русского алфавита, в котором нет двух соседних одинаковых подслов, но таковые появляются при приписывании (как справа, так и слева) любой буквы русского алфавита.Комментарий.<i>Словом</i>мы называем любую последовательность букв русского алфавита, не обязательно осмысленную,<i>подсловом</i>называется любой фрагмент слова. Например, АБВШГАБ - слово, а АБВ, Ш, ШГАБ - его подслова.
Придворный астролог царя Гороха называет время суток хорошим, если на часах с центральной секундной стрелкой при мгновенном обходе циферблата по ходу часов минутная стрелка встречается после часовой и перед секундной. Какого времени в сутках больше: хорошего или плохого? (Стрелки часов движутся с постоянной скоростью.)
На прямой стоят две фишки, слева – красная, справа – синяя. Разрешается производить любую из двух операций: вставку двух фишек одного цвета подряд в любом месте прямой и удаление любых двух соседних одноцветных фишек. Можно ли за конечное число операций оставить на прямой ровно две фишки: красную справа, а синюю – слева?