Олимпиадные задачи из источника «1989 год» для 9 класса - сложность 2 с решениями

В треугольнике <i>ABC</i> на сторонах <i>AB, BC</i> и <i>AC</i> взяты соответственно точки <i>M, K</i> и <i>L</i> так, что прямая <i>MK</i> параллельна прямой <i>AC</i> и <i>ML</i> параллельна <i>BC</i>. При этом отрезок <i>BL</i> пересекает отрезок <i>MK</i> в точке <i>P</i>, а <i>AK</i> пересекает <i>ML</i> в точке <i>Q</i>. Докажите, что отрезки <i>PQ</i> и <i>AB</i> параллельны.

Подмножество<i>X</i>множества "двузначных" чисел 00, 01, ..., 98, 99 таково, что в любой бесконечной последовательности цифр найдутся две цифры, стоящие рядом и образующие число из<i>X</i>. Какое наименьшее количество чисел может содержаться в<i>X</i>?

Часть клеток бесконечной клетчатой бумаги покрашена в красный цвет, остальные — в белый (не обязательно в шахматном порядке). По красным клеткам прыгает кузнечик, по белым — блоха, причём каждый прыжок может быть сделан на любое расстояние по вертикали или горизонтали. Докажите, что кузнечик и блоха могут оказаться рядом, сделав в общей сложности (в сумме) не более трёх прыжков.

Решите уравнение<div align="CENTER"> (<i>x</i><sup>2</sup> + <i>x</i>)<sup>2</sup> + $\displaystyle \sqrt{x^2-1}$ = 0. </div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка