Олимпиадные задачи из источника «1971 год» для 11 класса - сложность 3-4 с решениями

Доказать, что сумма цифр числа<i>N</i>превосходит сумму цифр числа5<sup>5 . </sup><i>N</i>не более чем в 5 раз.

В пространстве даны точка<i>O</i>и<i>n</i>попарно непараллельных прямых. Точка<i>O</i>ортогонально проектируется на все данные прямые. Каждая из получившихся точек снова проектируется на все данные прямые и т.д. Существует ли шар, содержащий все точки, которые могут быть получены таким образом?

Даны два набора чисел: <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> и <i>b</i><sub>1</sub>, ..., <i>b<sub>n</sub></i>. Расположим числа <i>a<sub>k</sub></i> в возрастающем порядке, а числа <i>b<sub>k</sub></i> – в убывающем порядке. Получатся наборы

<i>A</i><sub>1</sub> ≤ ... ≤ <i>A<sub>n</sub></i>,  <i>B</i><sub>1</sub> ≥ ... ≥ <i>B<sub>n</sub></i>.  Доказать, что  max{<i>a</i><sub>1</sub> + <i>b</i><sub>1</sub>, ..., <i>a<sub>n</sub> + b<sub>n</sub></i>} ≥ max{<...

а) Доказать, что сумма цифр числа <i>K</i> не более чем в 8 раз превосходит сумму цифр числа 8<i>K</i>.

б) Для каких натуральных <i>k</i> существует такое положительное число <i>c<sub>k</sub></i>, что  <img align="absmiddle" src="/storage/problem-media/78791/problem_78791_img_2.gif"> ≥ <i>c<sub>k</sub></i>  для всех натуральных <i>N</i>? Найдите наибольшее подходящее значение <i>c<sub>k</sub></i>.

Лежит кучка в 10 миллионов спичек. Двое играют в следующую игру. Ходят по очереди. За один ход играющий может взять из кучки спички в количестве <i>p<sup>n</sup></i>, где <i>p</i> – простое число,  <i>n</i> = 0, 1, 2, 3, ...  (например, первый берёт 25 спичек, второй – 8, первый – 1, второй – 5, первый – 49 и т.д.). Выигрывает тот, кто берёт последнюю спичку. Кто выиграет при правильной игре?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка