Олимпиадные задачи из источника «9 класс, 2 тур» - сложность 3 с решениями
9 класс, 2 тур
НазадСтороны выпуклого многоугольника, периметр которого равен 12, отодвигаются на расстояние<i>d</i>= 1 во внешнюю сторону. Доказать, что площадь многоугольника увеличится по крайней мере на 15.
Как надо расположить числа 1, 2, ..., 2<i>n</i> в последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>2<i>n</i></sub>, чтобы сумма |<i>a</i><sub>1</sub> – <i>a</i><sub>2</sub>| + |<i>a</i><sub>2</sub> – <i>a</i><sub>3</sub>| + ... + |<i>a</i><sub>2<i>n</i>–1</sub> – <i>a</i><sub>2<i>n</i></sub>| + |<i>a</i><sub>2<i>n</i></sub> – <i>a</i><sub>1</sub>| была наибольшей?
Школьник в течение учебного года должен решать ровно по 25 задач за каждые идущие подряд 7 дней. Время, необходимое на решение одной задачи (любой), не меняется в течение дня, но меняется в течение учебного года по известному школьнику закону и всегда меньше 45 минут. Школьник хочет затратить на решение задач в общей сложности наименьшее время. Доказать, что для этого он может выбрать некоторый день недели и в этот день (каждую неделю) решать по 25 задач.
Из чисел<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>,<i>x</i><sub>3</sub>,<i>x</i><sub>4</sub>,<i>x</i><sub>5</sub>можно образовать десять попарных сумм; обозначим их через<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ...,<i>a</i><sub>10</sub>. Доказать, что зная числа<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ...,<i>a</i><sub>10</sub>(но не зная, разумеется, суммой каких именно двух чисел является каждое из них), можно восстановить числа<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>,<i>x...