Олимпиадные задачи из источника «1960 год» для 10 класса - сложность 4 с решениями

В квадрате со стороной 100 расположено<i>N</i>кругов радиуса 1, причём всякий отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы один круг. Доказать, что<i>N</i>$\ge$400.<i>Примечание Problems.Ru</i>: Рассматриваются <i>открытые</i> круги, то есть круги без ограничивающей их окружности.

Дан произвольный центрально-симметричный шестиугольник. На его сторонах, как на основаниях, построены во внешнюю сторону правильные треугольники. Доказать, что середины отрезков, соединяющих вершины соседних треугольников, образуют правильный шестиугольник.

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях<i>P</i><sub>1</sub>и<i>P</i><sub>2</sub>, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка