Олимпиадные задачи из источника «1952 год» для 9 класса - сложность 4 с решениями
В равнобедренном треугольнике <i>ABC</i> ∠<i>ABC</i> = 20°. На равных сторонах <i>CB</i> и <i>AB</i> взяты соответственно точки <i>P</i> и <i>Q</i> так, что ∠<i>PAC</i> = 50° и ∠<i>QCA</i> = 60°.
Докажите, что ∠<i>PQC</i> = 30°.
Дана последовательность целых чисел, построенная следующим образом:<i>a</i><sub>1</sub>— произвольное трёхзначное число,<i>a</i><sub>2</sub>— сумма квадратов его цифр,<i>a</i><sub>3</sub>— сумма квадратов цифр числа<i>a</i><sub>2</sub>и т.д. Докажите, что в последовательности<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,<i>a</i><sub>3</sub>, ...обязательно встретится либо 1, либо 4.