Олимпиадные задачи из источника «1952 год» для 2-8 класса - сложность 1 с решениями

200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше?

Решить систему пятнадцати уравнений с пятнадцатью неизвестными:   <i>x</i><sub>1</sub><i>x</i><sub>2</sub> = <i>x</i><sub>2</sub><i>x</i><sub>3</sub> = ... = <i>x</i><sub>14</sub><i>x</i><sub>15</sub> = <i>x</i><sub>15</sub><i>x</i><sub>1</sub> = 1.

Если все 6 граней параллелепипеда — равные между собой параллелограммы, то они суть ромбы. Докажите.

Докажите тождество   (<i>ax + by + cz</i>)² + (<i>bx + cy + az</i>)² + (<i>cx + ay + bz</i>)² = (<i>cx + by + az</i>)² + (<i>bx + ay + cz</i>)² + (<i>ax + cy + bz</i>)².

В$\Delta$<i>ABC</i>вписана окружность, которая касается его сторон в точках<i>L</i>,<i>M</i>и<i>N</i>. Докажите, что$\Delta$<i>LMN</i>всегда остроугольный (независимо от вида$\Delta$<i>ABC</i>).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка