Олимпиадные задачи из источника «1951 год» - сложность 3 с решениями
Окружность обладает тем свойством, что внутри неё можно двигать правильный треугольник так, чтобы каждая вершина треугольника описывала эту окружность. Найти замкнутую несамопересекающуюся кривую, отличную от окружности, внутри которой также можно двигать правильный треугольник так, чтобы каждая его вершина описывала эту кривую.
Имеется несколько чисел, каждое из которых меньше чем 1951. Общее наименьшее кратное любых двух из них больше чем 1951.
Доказать, что сумма обратных величин этих чисел меньше 2.
При делении многочлена <i>x</i><sup>1951</sup> – 1 на <i>x</i><sup>4</sup> + <i>x</i>³ + 2<i>x</i>² + <i>x</i> + 1 получается частное и остаток. Найти в частном коэффициент при <i>x</i><sup>14</sup>.
Проекцией точки<i>A</i>из точки<i>O</i>на плоскость<i>P</i>называется точка<i>A'</i>, в которой прямая<i>OA</i>пересекает плоскость<i>P</i>. Проекцией треугольника называется фигура, состоящая из всех проекций его точек. Какими фигурами может быть проекция треугольника, если точка<i>O</i>не лежит в его плоскости?
Имеется кусок цепи из 150 звеньев, каждое из которых весит 1 г. Какое наименьшее число звеньев надо расковать, чтобы из образовавшихся частей можно было составить все веса в 1 г, 2 г, 3 г, ..., 150 г (раскованное звено весит тоже 1 г)?
Имеется кусок цепи из 60 звеньев, каждое из которых весит 1 г. Какое наименьшее число звеньев надо расковать, чтобы из образовавшихся частей можно было составить все веса в 1 г, 2 г, 3 г, ..., 60 г (раскованное звено весит тоже 1 г)?