Олимпиадные задачи из источника «1974 год» для 5-8 класса - сложность 5 с решениями

При каких <i>n</i> правильный <i>n</i>-угольник можно разместить на листе бумаги в линейку так, чтобы все вершины лежали на линиях?

(Линии — параллельные прямые, расположенные на одинаковых расстояниях друг от друга.)

На<i>n</i>карточках, выложенных по окружности, записаны числа, каждое из которых<nobr>равно 1</nobr><nobr>или –1.</nobr>За какое наименьшее число вопросов можно наверняка определить произведение всех<nobr><i>n</i> чисел,</nobr>если за один вопрос разрешено узнать произведение чисел на<nobr>а) любых</nobr>трёх карточках;<nobr>б) любых</nobr>трёх карточках, лежащих подряд? (Здесь<nobr><i>n</i> —</nobr>натуральное число,<nobr>большее 3).</nobr>

Окружность разбита точками<i>A</i><sub>1</sub>,<i>A</i><sub>2</sub>,...,<i>A</i><sub><i>n</i></sub>на<nobr><i>n</i> равных</nobr>дуг, каждая из которых окрашена в какой-то цвет. Две дуги окружности (с концами в точках разбиения) называем одинаково окрашенными, если при некотором повороте окружности одна из них полностью, включая цвета всех дуг, совпадает с другой. (Например, на рисунке дуги<i>A</i><sub>2</sub><i>A</i><sub>6</sub>и<i>A</i><sub>6</sub><i>A</i><sub>10</sub>одинаково окрашены.)Докажите, что если для каждой точки разбиения <i>A</i><sub><i>k</i><...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка