Олимпиадные задачи из источника «параграф 3. Инварианты» для 3-10 класса - сложность 2-4 с решениями
параграф 3. Инварианты
НазадКвадратное поле разбито на 100 одинаковых участков, 9 из которых поросли бурьяном. Известно, что бурьян за год распространяется на те и только те участки, у каждого из которых не менее двух соседних участков уже поражены бурьяном (участки соседние, если они имеют общую сторону). Докажите, что полностью все поле бурьяном не зарастёт.
Выпуклый многоугольник разрезан на<i>p</i>треугольников так, что на их сторонах нет вершин других треугольников. Пусть<i>n</i>и<i>m</i>— количества вершин этих треугольников, лежащих на границе исходного многоугольника и внутри его. а) Докажите, что<i>p</i>=<i>n</i>+ 2<i>m</i>- 2. б) Докажите, что количество отрезков, являющихся сторонами полученных треугольников, равно 2<i>n</i>+ 3<i>m</i>- 3.
Многоугольник разрезан на несколько многоугольников. Пусть <i>p</i> — количество полученных многоугольников,<i>q</i> — количество отрезков, являющихся их сторонами,<i>r</i> — количество точек, являющихся их вершинами. Докажите, что<i>p</i>-<i>q</i>+<i>r</i>= 1.
В центре каждой клетки шахматной доски стоит по фишке. Фишки переставили так, что попарные расстояния между ними не уменьшились. Докажите, что в действительности попарные расстояния не изменились.
Дан выпуклый 2<i>n</i>-угольник <i>A</i><sub>1</sub>...<i>A</i><sub>2<i>n</i></sub>. Внутри него взята точка <i>P</i>, не лежащая ни на одной из диагоналей.
Докажите, что точка <i>P</i> принадлежит чётному числу треугольников с вершинами в точках <i>A</i><sub>1</sub>,..., <i>A</i><sub>2<i>n</i></sub>.
Дана шахматная доска. Разрешается перекрашивать другой цвет сразу все клетки, расположенные внутри любого квадрата 2×2.
Может ли при этом на доске остаться ровно одна чёрная клетка?
Дана шахматная доска. Разрешается перекрашивать в другой цвет сразу все клетки какой-либо горизонтали или вертикали.
Может ли при этом получиться доска, у которой ровно одна чёрная клетка?