Олимпиадные задачи из источника «глава 13. Векторы» для 3-8 класса - сложность 5 с решениями

В выпуклом пятиугольнике<i>ABCDE</i>, площадь которого равна <i>S</i>, площади треугольников<i>ABC</i>,<i>BCD</i>,<i>CDE</i>,<i>DEA</i>и <i>EAB</i>равны <i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>и <i>e</i>. Докажите, что<div align="CENTER"> <i>S</i><sup>2</sup> - <i>S</i>(<i>a</i> + <i>b</i> + <i>c</i> + <i>d</i> + <i>e</i>) + <i>ab</i> + <i>bc</i> + <i>cd</i> + <i>de</i> + <i>ea</i> = 0. </div>

Пусть <i>H</i><sub>1</sub>,<i>H</i><sub>2</sub>и <i>H</i><sub>3</sub> — ортоцентры треугольников<i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub>,<i>A</i><sub>1</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub>и <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>4</sub>. Докажите, что площади треугольников<i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub>и <i>H</i><sub>1</sub><i>H</i&g...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка