Олимпиадные задачи из источника «параграф 6. Разные задачи» для 5-10 класса - сложность 3 с решениями
параграф 6. Разные задачи
НазадЧему равно наибольшее число клеток шахматной доски размером 8×8, которые можно разрезать одной прямой?
В городе 10 улиц, параллельных друг другу, и 10 улиц, пересекающих их под прямым углом. Какое наименьшее число поворотов может иметь замкнутый автобусный маршрут, проходящий через все перекрестки?
Точки <i>A</i>,<i>B</i>и <i>O</i>не лежат на одной прямой. Проведите через точку <i>O</i>прямую <i>l</i>так, чтобы сумма расстояний от нее до точек <i>A</i>и <i>B</i>была: а) наибольшей; б) наименьшей.
Даны прямая <i>l</i>и точки <i>P</i>и <i>Q</i>, лежащие по одну сторону от нее. На прямой <i>l</i>берем точку <i>M</i>и в треугольнике<i>PQM</i>проводим высоты<i>PP'</i>и<i>QQ'</i>. При каком положении точки <i>M</i>длина отрезка<i>P'Q'</i>минимальна?
На плоскости даны прямая <i>l</i>и точки <i>A</i>и <i>B</i>, лежащие по разные стороны от нее. Постройте окружность, проходящую через точки <i>A</i>и <i>B</i>так, чтобы прямая <i>l</i>высекала на ней хорду наименьшей длины.