Олимпиадные задачи из источника «глава 2. Комбинаторика» для 11 класса - сложность 2-4 с решениями
Имеется 1955 точек. Какое максимальное число троек можно из них выбрать так, чтобы каждые две тройки имели ровно одну общую точку?
Числа 1, 2, 3, ..., 101 выписаны в ряд в каком-то порядке.
Докажите, что из них можно вычеркнуть 90 так, что оставшиеся 11 будут расположены по их величине (либо возрастая, либо убывая).
Докажите, что числа Каталана удовлетворяют рекуррентному соотношению <i>C<sub>n</sub></i> = <i>C</i><sub>0</sub><i>C</i><sub><i>n</i>–1</sub> + <i>C</i><sub>1</sub><i>C</i><sub><i>n</i>–2</sub> + ... + <i>C</i><sub><i>n</i>–1</sub><i>C</i><sub>0</sub>.
Определение чисел Каталана <i>C<sub>n</sub></i> смотри в <a href="https://problems.ru/thes.php?letter=23#chisla_catalana">справочнике</a>.
а) Пусть {<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>,..., <i>a<sub>n</sub></i>} – последовательность целых чисел, сумма которых равна 1. Докажите, что ровно у одного из ее циклических сдвигов
{<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>}, {<i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, <i>a</i><sub>1</sub>}, ..., {<i>a<sub>n</sub></i>, <i>a</i><sub>1</sub>, ..., <i>a</i><sub><i>n</i>–1</sub>} все частичные суммы (от начала до произвольного элемента) положит...
Билеты стоят 50 центов, и 2<i>n</i> покупателей стоят в очереди в кассу. Половина из них имеет по одному доллару, остальные – по 50 центов. Кассир начинает продажу билетов, не имея денег. Сколько существует различных порядков в очереди, таких, что кассир всегда может дать сдачу?
Рассмотрим шахматную доску <i>n×n</i>. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов?
Сколько существует способов разрезать выпуклый (<i>n</i>+2)-угольник диагоналями на треугольники?
Сколько последовательностей {<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>2<i>n</i></sub>}, состоящих из единиц и минус единиц, обладают тем свойством, что <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a</i><sub>2<i>n</i></sub> = 0, а все частичные суммы <i>a</i><sub>1</sub>, <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub>, ..., <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a</i><sub>2<i>n</i></sub> неотрицательны?
Докажите, что в условии задач <a href="https://mirolimp.ru/tasks/160445">160445</a> б) и в) числа <sup>1</sup>/<sub>5</sub> и <sup>1</sup>/<sub>20</sub> нельзя заменить большими величинами. >
В прямоугольнике площади 1 расположено пять фигур площади ½ каждая. Докажите, что найдутся
а) две фигуры, площадь общей части которых не меньше <sup>3</sup>/<sub>20</sub>;
б) две фигуры, площадь общей части которых не меньше ⅕;
в) три фигуры, площадь общей части которых не меньше <sup>1</sup>/<sub>20</sub>.
В классе 30 учеников. Сколькими способами они могут пересесть так, чтобы ни один не сел на своё место?
Найдите суммы рядов а) <img align="absmiddle" src="/storage/problem-media/60427/problem_60427_img_2.gif">
б) <img align="absmiddle" src="/storage/problem-media/60427/problem_60427_img_3.gif">
в) <img align="absmiddle" src="/storage/problem-media/60427/problem_60427_img_4.gif"> (<i>r</i> ≥ 2).
Найдите сумму (см. задачу <a href="https://mirolimp.ru/tasks/160424">160424</a> про треугольник Лейбница):
<sup>1</sup>/<sub>12</sub> + <sup>1</sup>/<sub>30</sub> + <sup>1</sup>/<sub>60</sub> + <sup>1</sup>/<sub>105</sub> + ...
и обобщите полученный результат.
Докажите равенства (см. <i>треугольник Лейбница</i>, задача <a href="https://mirolimp.ru/tasks/160424">160424</a>): а) 1 = <sup>1</sup>/<sub>2</sub> + <sup>1</sup>/<sub>6</sub> + <sup>1</sup>/<sub>12</sub> + <sup>1</sup>/<sub>20</sub> + <sup>1</sup>/<sub>30</sub> + ... ; б) <sup>1</sup>/<sub>2</sub> = <sup>1</sup>/<sub>3</sub> + <sup>1</sup>/<sub>12</sub> + <sup>1</sup>/<sub>30</sub> + <sup>1</sup>/<sub>60</sub> + <sup>1</sup>/<sub>105</sub> + ... ; в) <sup>1</sup>/<sub>3&...
Какое слагаемое в разложении (1 + <img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60420/problem_60420_img_2.gif">)<sup>100</sup> по формуле бинома Ньютона будет наибольшим?
Найдите <i>m</i> и <i>n</i> зная, что <img align="absmiddle" src="/storage/problem-media/60419/problem_60419_img_2.gif">
В компании из 10 человек произошло 14 попарных ссор. Докажите, что все равно можно составить компанию из трёх друзей.
Докажите тождества: а) <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_2.gif"> б) <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_3.gif"> в) <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_4.gif"> г) <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_5.gif"> д) <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_6.gif">(Попробуйте доказать эти тождества тремя разными способами: пользуясь тем, что <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_7.gif"> – это количест...
Вычислите суммы: a) <img align="absmiddle" src="/storage/problem-media/60412/problem_60412_img_2.gif"> б) <img align="absmiddle" src="/storage/problem-media/60412/problem_60412_img_3.gif"> в) <img align="absmiddle" src="/storage/problem-media/60412/problem_60412_img_4.gif">
Придумайте какой-нибудь способ достроить треугольник Паскаля вверх.
Докажите, что в равенстве (<i>x</i><sub>1</sub> + ... + <i>x<sub>m</sub></i>)<sup><i>n</i></sup> = <img align="MIDDLE" border="0" src="/storage/problem-media/60400/problem_60400_img_2.gif"> коэффициенты <i>C</i>(<i>k</i><sub>1</sub>,..., <i>k<sub>m</sub></i>) могут быть найдены по формуле <img align="MIDDLE" border="0" src="/storage/problem-media/60400/problem_60400_img_3.gif">
Сколько рациональных слагаемых содержится в разложении а) (<img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60389/problem_60389_img_2.gif"> + <img width="26" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60389/problem_60389_img_3.gif">)<sup>100</sup>; б) (<img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60389/problem_60389_img_2.gif"> + <img width="26" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60389/problem_60389_img_4.gif">)<sup>300</sup>...
Докажите справедливость формулы <img align="absmiddle" src="/storage/problem-media/60388/problem_60388_img_2.gif">
Дано 51 различное двузначное число (однозначные числа считаем двузначными с первой цифрой 0). Докажите, что из них можно выбрать 6 таких чисел, что никакие 2 из них не имеют одинаковых цифр ни в одном разряде.