Олимпиадные задачи из источника «Интернет-ресурсы» для 4-6 класса - сложность 1-5 с решениями
Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?
На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.
Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.
Семья ночью подошла к мосту. Папа может перейти его за 1 минуту, мама – за 2, малыш – за 5, а бабушка – за 10 минут. У них есть один фонарик. Мост выдерживает только двоих. Как им перейти мост за 17 минут? (Если переходят двое, то они идут с меньшей из их скоростей. Двигаться по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя.)
Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.
Аня, Боря и Вася составляли слова из заданных букв. Все составили разное число слов: больше всех – Аня, меньше всех – Вася. Затем ребята просуммировали очки за свои слова. Если слово есть у двух игроков, за него даётся 1 очко, у одного игрока – 2 очка, слова, общие у всех трёх игроков, вычёркиваются. Могло ли так случиться, что больше всех очков набрал Вася, а меньше всех – Аня?
Сто человек ответили на вопрос: "Будет ли новый президент лучше прежнего?" Из них <i>a</i> человек считают, что будет лучше, <i>b</i> – что будет такой же, и <i>c</i> – что будет хуже. Социологи построили два показателя "оптимизма" опрошенных: <i>m = a + <sup>b</sup></i>/<sub>2</sub> и <i>n = a – c</i>. Оказалось, что <i>m</i> = 40. Найдите <i>n</i>.
Во время бала каждый юноша танцевал вальс с девушкой либо более красивой, чем на предыдущем танце, либо более умной, а один – с девушкой одновременно более красивой и более умной. Могло ли такое быть? (Юношей и девушек на балу было поровну.)
Три шахматиста <i>A, B</i> и <i>C</i> сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков <i>A</i> занял первое место, <i>C</i> – последнее, а по числу побед, наоборот, <i>A</i> занял последнее место, <i>C</i> – первое (за победу присуждается одно очко, за ничью – пол-очка)?
В вершинах 100-угольника расставлены числа так, что каждое равно среднему арифметическому своих соседей. Докажите, что все они равны.
Как, не имея никаких измерительных средств, отмерить 50 см от шнурка, длина которого ⅔ метра?
Все поля шахматной доски 8×8 покрыли 32 косточками домино (каждая косточка закрывает в точности два поля).
Докажите, что число вертикально лежащих косточек чётно.
На волшебной яблоне выросли 15 бананов и 20 апельсинов. Одновременно разрешается срывать один или два плода. Если сорвать один из плодов вырастет такой же, если сорвать сразу два одинаковых плода – вырастет апельсин, а если два разных – вырастет банан.
а) В каком порядке надо срывать плоды, чтобы на яблоне остался ровно один плод?
б) Можете ли вы определить, какой это будет плод?
в) Можно ли срывать плоды так, чтобы на яблоне ничего не осталось?
Один из четырёх углов, образующихся при пересечении двух прямых, равен 41°. Чему равны три остальных угла?
Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).
Зашифрование сообщения состоит в замене букв исходного текста на пары цифр в соответствии с некоторой (известной только отправителю и получателю) таблицей, в которой разным буквам алфавита соответствуют разные пары цифр. Криптографу дали задание восстановить зашифрованный текст. В каком случае ему будет легче выполнить задание: если известно, что первое слово второй строки – "термометр" или что первое слово третьей строки – "ремонт"?
Ковровая дорожка покрывает лестницу из 9 ступенек. Длина и высота лестницы равны 2 метрам. Хватит ли этой ковровой дорожки, чтобы покрыть лестницу из 10 ступенек длиной и высотой 2 метра?
Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
а) по 2 монеты;
б) по 3 монеты;
в) по 4 монеты;
г) по 5 монет;
д) по 6 монет;
е) по 7 монет?
(Разрешается класть монеты одну на другую.)
Расположите на плоскости шесть прямых и отметьте на них семь точек так, чтобы на каждой прямой было отмечено три точки.
У весов сдвинута стрелка. Когда на весы положили одну связку бананов, весы показали 1,5 кг. Когда на весы положили связку бананов побольше, весы показали 2,5 кг. Когда взвесили сразу обе связки бананов, весы показали 3,5 кг. Сколько на самом деле весили связки бананов?
Есть три кирпича и линейка. Как измерить без вычислений диагональ кирпича?
Николай с сыном и Петр с сыном были на рыбалке. Николай поймал столько же рыб, сколько и его сын, а Петр – втрое больше, чем его сын. Всего было поймано 25 рыб. Как зовут сына Петра?
Разрежьте фигуру, полученную из прямоугольника 4×5 вырезанием четырёх угловых клеток 1×1, на три части, не являющиеся квадратами, так, чтобы из этих частей можно было сложить квадрат.
Расставьте скобки в выражении 1-2-3-4-5-6-7=0 так, чтобы получилось верное равенство.
Переложите в равенстве X – I = I одну из спичек так, чтобы получилось верное равенство.