Олимпиадные задачи из источника «Система задач по геометрии Р.К.Гордина (zadachi.mccme.ru)» для 7 класса - сложность 3 с решениями
Система задач по геометрии Р.К.Гордина (zadachi.mccme.ru)
НазадСуществует ли выпуклый пятиугольник (все углы меньше180<i><sup>o</sup> </i>)<i> ABCDE </i>, у которого все углы<i> ABD </i>,<i> BCE </i>,<i> CDA </i>,<i> DEB </i>и<i> EAC </i>– тупые?
Дан параллелограмм <i>ABCD</i> (<i>AB < BC</i>). Докажите, что описанные окружности треугольников <i>APQ</i> для всевозможных точек <i>P</i> и <i>Q</i>, выбранных на сторонах <i>BC</i> и <i>CD</i> соответственно так, что <i>CP = CQ</i>, имеют общую точку, отличную от <i>A</i>.
Внутри выпуклого пятиугольника выбраны две точки. Докажите, что можно выбрать четырёхугольник с вершинами в вершинах пятиугольника так, что внутрь него попадут обе выбранные точки.
Дан треугольник <i>ABC</i> с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники <i>ABC</i><sub>1</sub>, <i>BCA</i><sub>1</sub> и <i>CAB</i><sub>1</sub>. Докажите, что треугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> не может быть правильным.
В выпуклом пятиугольнике <i>ABCDE</i> сторона <i>AB</i> перпендикулярна стороне <i>CD</i>, а сторона <i>BC</i> – стороне <i>DE</i>.
Докажите, что если <i>AB = AE = ED</i> = 1, то <i>BC + CD</i> < 1.
Докажите, что остроугольный треугольник полностью покрывается тремя квадратами, построенными на его сторонах как на диагоналях.
Сколько сторон может иметь выпуклый многоугольник, все диагонали которого равны?