Олимпиадные задачи по теме «Доказательство от противного» для 1-5 класса - сложность 1-4 с решениями

В пять горшочков, стоящих в ряд, Кролик налил три килограмма мёда (не обязательно в каждый и не обязательно поровну). Винни-Пух может взять любые два горшочка, стоящие рядом. Какое наибольшее количество мёда сможет гарантированно съесть Винни-Пух?

Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?

Юра, Лёша и Миша коллекционируют марки. Количество Юриных марок, которых нет у Лёши, меньше, чем количество марок, которые есть и у Юры, и у Лёши. Точно так же, число Лёшиных марок, которых нет у Миши, меньше, чем число марок, которые есть и у Лёши и у Миши. А число Мишиных марок, которых нет у Юры, меньше, чем число марок, которые есть и у Юры и у Миши. Докажите, что какая-то марка есть у каждого из трех мальчиков.

Можно ли разложить 44 шарика на 9 кучек так, чтобы количество шариков в разных кучках было различным?

Илья совершенно не любит задачи на скорость и не помнит ни одной формулы. Когда его спросили, какое расстояние проедет поезд, он попробовал и перемножить данные скорость и время, и сложить их, и даже поделить скорость на время. «У меня всегда получается одно и то же число! Наверное, это и есть правильный ответ!» — воскликнул Илья. Докажите, что выполнять арифметические действия Илья тоже не умеет.

Вася нарисовал карандашом разбиение клетчатого прямоугольника на прямоугольники размером 3×1 (тримино), закрасил ручкой центральную клетку каждого из получившихся прямоугольников, после чего стер карандашные линии. Всегда ли можно восстановить исходное разбиение?

Квадрат со стороной 9 клеток разрезали по линиям сетки на 14 прямоугольников таким образом, что длина каждой стороны любого прямоугольника не меньше, чем две клетки. Могло ли оказаться так, что среди этих прямоугольников не было ни одного квадрата?

Аня захотела вписать в каждую клетку таблицы 5×8 по одной цифре таким образом, чтобы каждая цифра встречалась ровно в четырёх рядах. (Рядами мы считаем как столбцы, так и строчки таблицы.) Докажите, что у неё ничего не получится.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка