Олимпиадные задачи по теме «Алгебраические методы» для 9-11 класса - сложность 1 с решениями

Можно ли в клетки квадрата 10×10 поставить некоторое количество звёздочек так, чтобы в каждом квадрате 2×2 было ровно две звёздочки, а в каждом прямоугольнике 3×1 – ровно одна звёздочка? (В каждой клетке может стоять не более одной звёздочки.)

В таблицу 4×4 записали натуральные числа. Могло ли оказаться так, что сумма чисел в каждой следующей строке на 2 больше, чем в предыдущей, а сумма чисел в каждом следующем столбце на 3 больше, чем в предыдущем?

Может ли среднее арифметическое 35 целых чисел равняться 6,35?

109 яблок разложены по пакетам. В некоторых пакетах лежит по <i>x</i> яблок, в других – по три яблока.

Найдите все возможные значения <i>x</i>, если всего пакетов – 20.

На экране компьютера горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Программист Федя имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным?

Натуральное число <i>n</i> записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то <i>n</i> делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число <i>различных</i> цифр может содержать эта запись?

Вася задумал три различные цифры, отличные от нуля. Петя записал все возможные двузначные числа, в десятичной записи которых использовались только эти цифры. Сумма записанных чисел равна 231. Найдите цифры, задуманные Васей.

В клетках шахматной доски записаны в произвольном порядке натуральные числа от 1 до 64 (в каждой клетке записано ровно одно число и каждое число записано ровно один раз). Может ли в ходе шахматной партии сложиться ситуация, когда сумма чисел, записанных в клетках, занятых фигурами, ровно вдвое меньше суммы чисел, записанных в клетках, свободных от фигур?

Пусть<i>a</i>и<i>b</i>— целые числа. Напишем число<i>b</i>справа от числа<i>a</i>. Если число<i>a</i>чётное, то разделим его на 2, если оно нечётное, то сначала вычтем из него единицу, а потом разделим его на 2. Получившееся число<i>a</i><sub>1</sub>напишем под числом<i>a</i>. Справа от числа<i>a</i><sub>1</sub>напишем число 2<i>b</i>. С числом<i>a</i><sub>1</sub>проделаем ту же операцию, что и с числом<i>a</i>, и, получив число<i>a</i><sub>2</sub>, напишем его под числом<i>a</i><sub>1</sub>. Справа от числа<i>a</i><sub>2</sub>напишем число 4<i>b&l...

Докажите, что при любом натуральном <i>n</i> число  <i>n</i>² + 8<i>n</i> + 15  не делится на  <i>n</i> + 4.

Найдите число всех диаграмм Юнга с весом <i>s</i>, если

а)  <i>s</i> = 4;   б)  <i>s</i> = 5;   в)  <i>s</i> = 6;   г)  <i>s</i> = 7.

Определение диаграмм Юнга смотри в <a href="https://problems.ru/thes.php?letter=4#diagramma_junga">справочнике</a>.

Докажите, что для монотонно возрастающей функции<i>f</i>(<i>x</i>) уравнения<i>x</i>=<i>f</i>(<i>f</i>(<i>x</i>)) и<i>x</i>=<i>f</i>(<i>x</i>) равносильны.

Докажите равенство   (<i>a</i><sup>2</sup> + <i>b</i><sup>2</sup>)(<i>u</i><sup>2</sup> + <i>v</i><sup>2</sup>) = (<i>au + bv</i>)<sup>2</sup> + (<i>av – bu</i>)<sup>2</sup>.

Докажите, что составное число <i>n</i> всегда имеет делитель, больший 1, но не больший  <img width="27" height="33" align="MIDDLE" border="0" src="/storage/problem-media/60461/problem_60461_img_2.gif">.

Докажите, что медианы разбивают треугольник на шесть равновеликих треугольников.

<i>Ключом</i> шифра, называемого "поворотная решетка", является трафарет, изготовленный из квадратного листа клетчатой бумаги размера <i>n</i>×<i>n</i> (<i>n</i> чётно). Некоторые из клеток вырезаются. Одна из сторон трафарета помечена. При наложении этого трафарета на чистый лист бумаги четырьмя возможными способами (помеченной стороной вверх, вправо, вниз, влево) его вырезы полностью покрывают всю площадь квадрата, причём каждая клетка оказывается под вырезом ровно один раз. Буквы сообщения, имеющего длину <i>n</i>², последовательно вписываются в вырезы трафарета, сначала наложенного на чистый лист бумаги помеченной стороной вверх. После заполнения всех вырезов трафарета буквами сообщения трафарет располагается в след...

Шоколадка имеет размер 4×10 плиток. За один ход разрешается разломать один из уже имеющихся кусочков на два вдоль прямолинейного разлома. За какое наименьшее число ходов можно разбить всю шоколадку на кусочки размером в одну плитку?

Гайка имеет форму правильной шестиугольной призмы. Каждая боковая грань гайки покрашена в один из трёх цветов: белый, красный или синий, причём соседние грани выкрашены в разные цвета. Сколько существует различных по раскраске гаек? (Для раскраски гайки не обязательно использовать все три краски.)

Является ли число  4<sup>9</sup> + 6<sup>10</sup> + 3<sup>20</sup>  простым?

Докажите, что  1 + 2<sup>77</sup> + 3<sup>77</sup> + ... + 1996<sup>77</sup>  делится на 1997.

На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине?

В компании из k человек (k > 3) у каждого появилась новость, известная ему одному. За один телефонный разговор двое сообщают друг другу все известные им новости. Докажите, что за 2k – 4 разговора все они могут узнать все новости.

Известно, что число  <i>a</i> + <sup>1</sup>/<sub><i>a</i></sub>  – целое. Докажите, что число  <i>a</i>² + <sup>1</sup>/<sub><i>a</i>²</sub>  – тоже целое.

Сколькими способами можно поставить на шахматную доску так, чтобы они не били друг друга

  а) две ладьи;   б) двух королей;  в) двух слонов;   г) двух коней;   д) двух ферзей?

Все фигуры одного цвета.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка