Олимпиадные задачи по теме «Производная» для 9 класса - сложность 3 с решениями
Производная
НазадСуществуют ли такие значения <i>a</i> и <i>b</i>, при которых уравнение <i>х</i><sup>4</sup> – 4<i>х</i><sup>3</sup> + 6<i>х</i>² + <i>aх + b</i> = 0 имеет четыре различных действительных корня?
Многочлен <i>P</i>(<i>x</i>) степени <i>n</i> имеет <i>n</i> различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?
Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.
Пусть <i>f</i>(<i>x</i>) – некоторый многочлен ненулевой степени.
Может ли оказаться, что уравнение <i>f</i>(<i>x</i>) = <i>a</i> при любом значении <i>a</i> имеет чётное число решений?
Пусть <i>a</i> – положительный корень уравнения <i>x</i><sup>2017</sup> – <i>x</i> – 1 = 0, а <i>b</i> – положительный корень уравнения <i>y</i><sup>4034</sup> – <i>y</i> = 3<i>a</i>.
а) Сравните <i>a</i> и <i>b</i>.
б) Найдите десятый знак после запятой числа |<i>a – b</i>|.
Дано натуральное число <i>n</i> > 3. Назовём набор из <i>n</i> точек на координатной плоскости <i>допустимым</i>, если их абсциссы различны, и каждая из этих точек окрашена либо в красный, либо в синий цвет. Будем говорить, что многочлен <i>P</i>(<i>x</i>) <i>разделяет</i> допустимый набор точек, если либо выше графика <i>P</i>(<i>x</i>) нет красных точек, а ниже – нет синих, либо наоборот (на самом графике могут лежать точки обоих цветов). При каком наименьшем <i>k</i> любой допустимый набор из <i>n</i> точек можно разделить многочленом степени не более <i>k</i>?
Даны рациональные положительные <i>p, q</i>, причём <sup>1</sup>/<sub><i>p</i></sub> + <sup>1</sup>/<sub><i>q</i></sub> = 1. Докажите, что для положительных <i>a</i> и <i>b</i> выполняется неравенство <i>ab ≤ <sup>a<sup>p</sup></sup></i>/<i><sub>p</sub> + <sup>b<sup>q</sup></sup></i>/<sub><i>q</i></sub>.
Найдите все значения параметра <i>a</i>, при которых корни <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub> многочлена <i>x</i><sup>3</sup> – 6<i>x</i><sup>2</sup> + <i>ax + a</i> удовлетворяют равенству
(<i>x</i><sub>1</sub> – 3)<sup>3</sup> + (<i>x</i><sub>2</sub> – 3)<sup>3</sup> + (<i>x</i><sub>3</sub> – 3)<sup>3</sup> = 0.