Олимпиадные задачи по теме «Задачи-шутки» для 9-11 класса
Задачи-шутки
НазадНайдутся ли натуральные числа <i>x, y</i> и <i>z</i>, удовлетворяющие условию 28<i>x</i> + 30<i>y</i> + 31<i>z</i> = 365?
Назовем натуральное число "изумительным", если оно имеет вид a<sup>b</sup>+ b<sup>a</sup>(где a и b - натуральные числа). Например, число 57 - изумительное, так как 57 = 2<sup>5</sup>+ 5<sup>2</sup>. Является ли изумительным число 2006?
Король
решил уволить в отставку премьер-министра, но не хотел его обидеть.
Когда премьер-министр пришёл к королю, тот сказал: "В этот
портфель я положил два листа бумаги. На одном из них написано
"Останьтесь"', на другом — "Уходите"'. Листок, который вы сейчас
не глядя вытянете из портфеля, решит вашу судьбу".
Премьер-министр догадался, что на обоих листках написано "Уходите". Однако ему удалось сделать так, что король его оставил. Как поступил премьер-министр?
Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$
Обозначим через<i>S</i>сумму следующего ряда:<div align="CENTER"> <!-- MATH \begin{equation} S=1-1+1-1+1-\ldots \end{equation} --> <table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"> <td nowrap align="CENTER"><i>S</i> = 1 - 1 + 1 - 1 + 1 -...</td> <td nowrap width="10" align="RIGHT"> (12.1)</td></tr> </table></div><br clear="ALL">Преобразовав равенство (<a href="https://mirolimp.ru/tasks/161543">12.1</a>), можно получить уравнение, из которого находится<i>S</i>:<div align="CENTER"> <i>S</i> = 1 - (1 - 1 + 1 - 1 +...) = 1 -...
<b>``65 = 64 = 63''.</b>Тождество Кассини лежит в основе одного геометрического парадокса. Он заключается в том, что можно взять шахматную доску, разрезать ее на четыре части, как показано ниже, а затем составить из этих же частей прямоугольник:
<img width="131" height="131" align="BOTTOM" border="0" src="/storage/problem-media/61541/problem_61541_img_2.gif" alt="\begin{picture} (80,80)\multiput(0,0)(0,10){9}{\line(1,0){80}} \multiput(0,0)(... ...(0,1){80}} \put(0,50){\line(1,0){80}}\qbezier(50,0)(40,25)(30,50) \end{picture}">
<img width="211" height="83" align="BOTTOM" border="0" src="/storage/problem-media/61541/problem_61541_img_3.gi...
После экспериментов с мнимой единицей, Коля Васин занялся комплексной экспонентой. Пользуясь формулами задачи <a href="https://mirolimp.ru/tasks/161115">161115</a>, он смог доказать, что sin <i>x</i> всегда равен нулю, а cos <i>x</i> – единице: <div align="center"><img src="/storage/problem-media/61540/problem_61540_img_2.gif"> <img src="/storage/problem-media/61540/problem_61540_img_3.gif"></div>Где ошибка в приведённых равенствах?
<b>``1 = - 1''.</b>Изучив комплексные числа, Коля Васин решил вывести формулу, которая носила бы его имя. После нескольких попыток ему это удалось:<div align="CENTER"> $\displaystyle \sqrt{\frac{1}{-1}}$ = $\displaystyle \sqrt{\frac{-1}{1}}$ $\displaystyle \Rightarrow$ $\displaystyle {\frac{\sqrt1}{\sqrt{-1}}}$ = $\displaystyle {\frac{\sqrt{-1}}{\sqrt1}}$ $\displaystyle \Rightarrow$ $\displaystyle \sqrt{1}$$\displaystyle \sqrt{1}$ = $\displaystyle \sqrt{-1}$$\displaystyle \sqrt{-1}$ $\displaystyle \Rightarrow$ 1 = - 1. </div>После некоторых размышлений, Коля придумал более короткое доказательство своего тождества:<div align="CENTER"> -1 = <i>i</i><sup>2</sup> = $\displaystyle \sqrt{-1}$<sup> . </su...
Найдите коэффициент при <i>x</i> у многочлена (<i>x – a</i>)(<i>x – b</i>)(<i>x – c</i>)...(<i>x – z</i>).
Восстановите алфавит племени Мумбо-Юмбо из задачи <a href="https://mirolimp.ru/tasks/160340">2.6</a>.
Яблоко плавает на воде так, что <sup>1</sup>/<sub>5</sub> часть яблока находится над водой, а <sup>4</sup>/<sub>5</sub> – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке?