Олимпиадные задачи по теме «Теория алгоритмов» для 6 класса - сложность 2 с решениями
Теория алгоритмов
НазадДва фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?
Известно, что среди 63 монет есть 7 фальшивых. Все фальшивые монеты весят одинаково, все настоящие монеты также весят одинаково, и фальшивая монета легче настоящей. Как за три взвешивания на чашечных весах без гирь определить 7 настоящих монет?
Перед гномом лежат три кучки бриллиантов: 17, 21 и 27 штук. В одной из кучек лежит один фальшивый бриллиант. Все бриллианты имеют одинаковый вид, все настоящие бриллианты весят одинаково, а фальшивый отличается от них по весу. У гнома есть чашечные весы без гирь. Гному надо за одно взвешивание найти кучку, в которой все бриллианты настоящие. Как это сделать?
Есть длинный ряд луночек. В трёх из них лежит по шарику. Игроки по очереди делают ход: берут один из крайних шариков и перекладывают в свободную луночку между двумя другими. Тот, кто не может сделать ход, считается проигравшим. Кто – начинающий игру или ходящий вторым – победит при правильной игре при показанных на рисунках первоначальных расположениях шариков?
а) <img align="absmiddle" src="/storage/problem-media/110925/problem_110925_img_2.gif">
б) <img align="absmiddle" src="/storage/problem-media/110925/problem_110925_img_3.gif">
в) <img align="absmiddle" src="/storage/problem-media/110925/problem_110925_img_4.gif">
г) Разберите общий случай: между крайними шариками и средним имее...
Двое играют в такую игру. В начале по кругу стоят числа 1, 2, 3, 4. Каждым своим ходом первый прибавляет к двум соседним числам по 1, а второй меняет любые два соседних числа местами. Первый выигрывает, если все числа станут равными. Может ли второй ему помешать?
На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?
Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.
Какую максимальную сумму Петя может снять со счета, если других денег у него нет?
На клетчатой бумаге нарисован прямоугольник 5x9. В левом нижнем углу стоит фишка. Коля и Серёжа по очереди передвигают ее на любое количество клеток либо вправо, либо вверх. Первым ходит Коля. Выигрывает тот, кто поставит фишку в правый верхний. Кто выигрывает при правильной игре?
На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.
Семья ночью подошла к мосту. Папа может перейти его за 1 минуту, мама – за 2, малыш – за 5, а бабушка – за 10 минут. У них есть один фонарик. Мост выдерживает только двоих. Как им перейти мост за 17 минут? (Если переходят двое, то они идут с меньшей из их скоростей. Двигаться по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя.)
Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Какое наименьшее число попыток надо сделать, чтобы наверняка открыть все чемоданы? А сколько понадобится попыток, если ключей и чемоданов будет не по 6, а по 10?
Миша загадал число не меньше 1 и не больше 1000. Васе разрешено задавать только такие вопросы, на которые Миша может ответить «да» или «нет» (Миша всегда говорит правду). Может ли Вася за 10 вопросов определить загаданное число?
12 кузнецов должны подковать 15 лошадей. Каждый кузнец тратит на одну подкову 5 минут. Какое наименьшее время они должны потратить на работу? (Учтите, лошадь не может стоять на двух ногах.)
Имеются 12-литровый бочонок, наполненный квасом, и два пустых бочонка — в 5 и 8 л. Попробуйте, пользуясь этими бочонками а) разделить квас на две части — 3 и 9 л; б) разделить квас на две равные части.
Имеются двое песочных часов — на 7 минут и на 11 минут. Яйцо варится 15 минут. Как отмерить это время при помощи имеющихся часов?
<b><em>Сказка о царе Салтане. </em></b>В подвалах Князя Гвидона среди мешков с золотыми монетами, отлитыми из ореховых скорлупок, затесался один, в котором все монеты фальшивые. И мешок, и монеты выглядят точно так же, как настоящие, но настоящая монета весит 20 золотников, а фальшивая — 15. Как с помощью одного (!) взвешивания определить, в каком мешке фальшивые монеты?
Двое играют в крестики-нолики на доске 10×10 по следующим правилам. Сначала они заполняют крестиками и ноликами всю доску, ставя их по очереди (начинающий игру ставит крестики, его партнер – нолики). Затем подсчитываются два числа: K – число пятерок подряд стоящих крестиков и H – число пятерок подряд стоящих ноликов. (Считаются пятерки, стоящие по горизонтали, по вертикали и параллельно диагонали; если подряд стоят шесть крестиков, то это даёт две пятерки, если семь, то три и т. д.) Число K – H считается выигрышем первого игрока (проигрышем второго).
а) Существует ли у первого игрока беспроигрышная стратегия?
б) Существует ли у него выигрышная стратегия?
На плоскости расположен квадрат и невидимыми чернилами нанесена точка <i>P</i>. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит <i>P</i> (если <i>P</i> лежит на прямой, то он говорит, что <i>P</i> лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка <i>P</i> внутри квадрата?
Дама сдавала в багаж рюкзак, чемодан, саквояж и корзину. Известно, что чемодан весит больше, чем рюкзак; саквояж и рюкзак весят больше, чем чемодан и корзина; корзина и саквояж весят столько же, сколько чемодан и рюкзак. Перечислите вещи дамы в порядке убывания их веса.
На волшебной яблоне выросли 15 бананов и 20 апельсинов. Одновременно разрешается срывать один или два плода. Если сорвать один из плодов вырастет такой же, если сорвать сразу два одинаковых плода – вырастет апельсин, а если два разных – вырастет банан.
а) В каком порядке надо срывать плоды, чтобы на яблоне остался ровно один плод?
б) Можете ли вы определить, какой это будет плод?
в) Можно ли срывать плоды так, чтобы на яблоне ничего не осталось?
Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Какое наименьшее число попыток надо сделать, чтобы наверняка открыть все чемоданы? А сколько понадобится попыток, если ключей и чемоданов будет не по 6, а по 10?
48 кузнецов должны подковать 60 лошадей. Каждый кузнец тратит на одну подкову 5 минут. Какое наименьшее время они должны потратят на работу? (Учтите, лошадь не может стоять на двух ногах.)
Путешественник, сняв в гостинице комнату на неделю, предложил хозяину в уплату цепочку из семи серебряных колец — по кольцу за день, с тем, однако, условием, что будет рассчитываться ежедневно. Хозяин согласился, оговорив со своей стороны, что можно распилить только одно кольцо. Как путешественнику удалось расплатиться с хозяином гостиницы?
<b>Игра с тремя кучками камней.</b>Имеется три кучки камней: в первой — 10, во второй — 15, в третьей — 20. За ход разрешается разбить любую кучку на две меньшие части; проигрывает тот, кто не сможет сделать хода.
<b>Игра с «доминошками».</b>Дана клетчатая доска 10×10. За ход разрешается покрыть любые две соседние клетки доминошкой (прямоугольником размером 1×2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход.