Олимпиадные задачи по теме «Классическая комбинаторика» для 3-5 класса
Классическая комбинаторика
НазадДля игры в шляпу Надя хочет разрезать лист бумаги на 48 одинаковых прямоугольников. Какое наименьшее количество разрезов ей придется сделать, если любые куски бумаги можно перекладывать, но нельзя сгибать, а Надя способна резать одновременно сколько угодно слоёв бумаги? (Каждый разрез – прямая линия от края до края куска.)
На рисунке приведены три примера показаний исправных электронных часов. Сколько палочек могут перестать работать, чтобы время всегда можно было определить однозначно? <div align="center"><img src="/storage/problem-media/117005/problem_117005_img_2.gif"></div>
Вася выписал все слова (не обязательно осмысленные), которые получаются вычеркиванием ровно двух букв из слова <i>ИНТЕГРИРОВАНИЕ</i>, а Маша сделала то же самое со словом <i>СУПЕРКОМПЬЮТЕР</i>. У кого получилось больше слов?
Боря и Миша едут в поезде и считают столбы за окном: "один, два, ...". Боря не выговаривает букву "Р", поэтому при счете он пропускает числа, в названии которых есть буква "Р", а называет сразу следующее число без буквы "Р". Миша не выговаривает букву "Ш", поэтому пропускает числа с буквой "Ш". У Бори последний столб получил номер "сто". Какой номер этот столб получил у Миши?
В забеге от Воробьёвых гор до Красной площади приняли участие три спортсмена. Сначала стартовал Гриша, затем – Саша, и последней – Лена. После финиша выяснилось, что во время забега Гриша обгонял других 10 раз, Лена – 6 раз, Саша – 4 раза, причём все трое ни разу не оказывались в одной точке одновременно. В каком порядке финишировали спортсмены, если известно, что они пришли к финишу в разное время?
– У меня зазвонил телефон.
– Кто говорит?
– Слон.
А потом позвонил Крокодил, а потом позвонили Зайчатки, а потом позвонили Мартышки, а потом позвонил Медведь, а потом позвонили Цапли... Итак, у Слона, Крокодила, Зайчаток, Мартышек, Медведя, Цапель и у меня установлены телефоны. Каждые два телефонных аппарата соединены проводом. Cколько для этого понадобилось проводов?
Сколько существует трехзначных чисел?
В обыкновенном наборе домино 28 косточек. Сколько косточек содержал бы набор домино, если бы значения, указанные на косточках, изменялись не от 0 до 6, а от 0 до 12?
В детский сад завезли карточки для обучения чтению: на некоторых написано "МА", на остальных – "НЯ". Каждый ребёнок взял три карточки и стал составлять из них слова. Оказалось, что слово "МАМА" могут сложить из своих карточек 20 детей, слово "НЯНЯ" – 30 детей, а слово "МАНЯ" – 40 детей. У скольких ребят все три карточки одинаковы?
Внутренние покои дворца султана Ибрагима ибн-Саида состоят из 100 одинаковых квадратных комнат, расположенных в виде квадрата10×10 комнат. Если у двух комнат есть общая стена, то в ней обязательно есть ровно одна дверь. А если стена торцевая, то в ней обязательно есть ровно одно окно. Как сосчитать, сколько окон и дверей в покоях Ибрагима ибн-Саида?
Можно ли разложить 44 шарика на 9 кучек так, чтобы количество шариков в разных кучках было различным?
У каждого из тридцати шестиклассников есть одна ручка, один карандаш и одна линейка. После их участия в олимпиаде оказалось, что 26 учеников потеряли ручку, 23 – линейку и 21 – карандаш. Найдите наименьшее возможное количество шестиклассников, потерявших все три предмета.
Из 101 далматинца у 29 пятно только на левом ухе, у 17 – только на правом ухе, а у 22 далматинцев нет пятен на ушах.
Сколько далматинцев имеют пятно на правом ухе?
Мария Ивановна покупает 16 шариков для Последнего звонка. В магазине есть шарики трёх цветов: синего, красного и зелёного. Сколько существует вариантов различных покупок 16 шариков, если Мария Ивановна хочет, чтобы шарики каждого цвета составляли не менее четверти от количества всех шариков?
Сколько существует трёхзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?
В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?
Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?
Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?
а) В магазине "Все для чая" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?б) В магазине есть еще 4 чайные ложки. Сколькими способами можно купить комплект из чашки, блюдца и ложки?в) В магазине по-прежнему продается 5 чашек, 3 блюдца и 4 чайные ложки. Сколькими способами можно купить два предмета с разными названиями?