Олимпиадные задачи по теме «Геометрия» для 2-6 класса - сложность 3 с решениями
Мачеха приказала Золушке сшить квадратное одеяло из пяти прямоугольных кусков так, чтобы длины сторон всех кусков были попарно различны и составляли целое число дюймов. Сможет ли Золушка выполнить задание без помощи феи-крестной?
Дима разрезал картонный квадрат 8×8 по границам клеток на шесть частей (см. рисунок). Оказалось, что квадрат остался <i>крепким</i>: если положить его на стол и потянуть (вдоль стола) за любую часть в любом направлении, то весь квадрат потянется вместе с этой частью. <div align="center"><img src="/storage/problem-media/116975/problem_116975_img_2.gif"></div>Покажите, как разрезать такой квадрат по границам клеток не менее чем на 27 частей, чтобы квадрат оставался<i>крепким</i>и в каждой части было не более 16 клеток.
Ребёнок поставил четыре одинаковых кубика так, что буквы на сторонах кубиков, обращённых к нему, образуют его имя (см. рисунок). Нарисуйте, как расположены остальные буквы на данной развёртке кубика и определите, как зовут ребёнка. <div align="center"><img src="/storage/problem-media/116866/problem_116866_img_2.gif"></div>
План дворца шаха – это квадрат размером 6×6, разбитый на комнаты размером 1×1. В середине каждой стены между комнатами есть дверь. Шах сказал своему архитектору: "Cломай часть стен так, чтобы все комнаты стали размером 2×1, новых дверей не появилось, а путь между любыми двумя комнатами проходил не более, чем через <i>N</i> дверей". Какое наименьшее значение <i>N</i> должен назвать шах, чтобы приказ можно было выполнить?
Любознательный турист хочет прогуляться по улицам Старого города от вокзала (точка <i>A</i> на плане) до своего отеля (точка <i>B</i>). Турист хочет, чтобы его маршрут был как можно длиннее, но дважды оказываться на одном и том же перекрестке ему неинтересно, и он так не делает. Нарисуйте на плане самый длинный возможный маршрут и докажите, что более длинного нет. <div align="center"><img align="absmiddle" src="/storage/problem-media/111897/problem_111897_img_2.gif"></div>
Поставьте на плоскости 9 точек так, чтобы никакие 4 не лежали на одной прямой, но из любых шести нашлись 3, лежащие на одной прямой. (На рисунке проведите все прямые, на которых лежат по три отмеченные точки.)
Нарисуйте, как из данных трёх фигурок, использовав каждую ровно один раз, сложить фигуру, имеющую ось симметрии. <img src="/storage/problem-media/109426/problem_109426_img_2.gif">
Серёжа придумал фигуру, которую легко разрезать на две части и сложить из них квадрат (см. рис.). <img src="/storage/problem-media/105201/problem_105201_img_2.png"> Покажите как по-другому разрезать эту фигуру на две части, из которых тоже можно сложить квадрат.
Петя закрасил одну клетку прямоугольника. Саша может закрашивать другие клетки этого прямоугольника по следующему правилу: можно красить любую клетку, у которой нечётное число закрашенных соседей (по стороне). Сможет ли Саша закрасить все клетки прямоугольника (независимо от того, какую клетку выбрал Петя), если размеры прямоугольника а) 8×9 клеток? б) 8×10 клеток?
Дед звал внука к себе в деревню:
– Вот посмотришь, какой я необыкновенный сад посадил! У меня там растёт четыре груши, а ещё есть яблони, причём они посажены так, что на расстоянии 10 метров от каждой яблони растёт ровно две груши.
– Ну и что тут интересного, – ответил внук. – У тебя всего две яблони.
– А вот и не угадал, – улыбнулся дед. – Яблонь у меня в саду больше, чем груш.
Нарисуйте, как могли расти яблони и груши в саду у деда. Постарайтесь разместить на рисунке как можно больше яблонь, не нарушая условий.
На плоскости нарисован чёрный равносторонний треугольник. Имеется девять треугольных плиток того же размера и той же формы. Нужно положить их на плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя бы часть чёрного треугольника (хотя бы одну точку внутри него). Как это сделать?
Можно ли расставить на листе клетчатой бумаги крестики и нолики так, чтобы ни на одной горизонтали, вертикали и диагонали нельзя было встретить три одинаковых знака подряд?
У Васи есть трафареты и цветные карандаши. Вася каждым ходом может приложить трафарет к бумаге и закрасить выбранным цветом всю видимую через трафарет область. Например, используя трафарет с двумя отверстиями, как на рисунке слева, Вася может раскрасить фигурку в центре за 3 хода в 3 цвета. Придумайте для Васи такой трафарет с двумя отверстиями, пользуясь которым он сможет за 5 ходов раскрасить фигуру в форме яблока (на рисунке справа) в 5 цветов так, чтобы каждая треугольная клетка была покрашена ровно одним цветом. Трафарет можно поворачивать и переворачивать. <img src="/storage/problem-media/67393/problem_67393_img_2.png">
Разрежьте первый параллелограмм на три части и сложите из них второй.<img src="/storage/problem-media/67287/problem_67287_img_2.png">
Каждая грань куба 6×6×6 разбита на клетки 1×1. Куб оклеили квадратами 2×2 так, что каждый квадрат накрывает ровно четыре клетки, никакие квадраты не совпадают и каждая клетка накрыта одинаковым числом квадратов. Какое наибольшее значение может принимать это одинаковое число? (Квадрат можно перегибать через ребро.)
У Вики есть четыре фигурки, у Алины есть квадрат, а у Полины есть квадрат другого размера. Объединившись, Алина и Вика могут сложить квадрат, используя все свои пять фигурок. Может ли оказаться так, что Полина и Вика также смогут сложить квадрат, используя все свои пять фигурок? (Квадраты складываются без просветов и наложений.)
Разрежьте фигуру на двенадцать одинаковых частей. <div align="center"><img src="/storage/problem-media/65975/problem_65975_img_2.gif"></div>
На сколько равных восьмиугольников можно разрезать квадрат размером 8×8? (Все разрезы должны проходить по линиям сетки.)
Вася нарисовал карандашом разбиение клетчатого прямоугольника на прямоугольники размером 3×1 (тримино), закрасил ручкой центральную клетку каждого из получившихся прямоугольников, после чего стер карандашные линии. Всегда ли можно восстановить исходное разбиение?
Есть 16 кубиков, каждая грань которых покрашена в белый, чёрный или красный цвет (различные кубики могут быть покрашены по-разному). Посмотрев на их раскраску, барон Мюнхгаузен сказал, что может так поставить их на стол, что будет виден только белый цвет, может поставить так, что будет виден только чёрный, а может и так, что будет виден только красный. Могут ли его слова быть правдой?
Юра начертил на клетчатой бумаге прямоугольник (по клеточкам) и нарисовал на нём картину. После этого он нарисовал вокруг картины рамку шириной в одну клеточку (см. рис.). Оказалось, что площадь картины равна площади рамки. Какие размеры могла иметь Юрина картина? <div align="center"><img src="/storage/problem-media/65105/problem_65105_img_2.gif"></div>
Незнайка рисует замкнутые пути внутри прямоугольника 5×8, идущие по диагоналям прямоугольников 1×2. На рисунке изображён пример пути, проходящего по 12 таким диагоналям. Помогите Незнайке нарисовать путь как можно длиннее.<div align="center"><img src="/storage/problem-media/64578/problem_64578_img_2.gif"></div>
Вася называет прямоугольник, стороны которого отличаются на 1, <i>почти-квадратом</i>. (Например, прямоугольник со сторонами 5 и 6 – это почти-квадрат.) Существует ли почти-квадрат, который можно разрезать на 2010 почти-квадратов?
В поселке 100 домов. Какое наибольшее число замкнутых не пересекающихся заборов можно построить, чтобы каждый забор огораживал хотя бы один дом и никакие два забора не огораживали бы одну и ту же совокупность домов?
Может ли кузнечик за 25 прыжков вернуться в начальную позицию, если он прыгает:
a) по прямой в любую сторону на нечётное расстояние;
б) по плоскости на расстояние 1 в любом из четырёх основных направлений (вверх, вниз, вправо, влево);
в) по плоскости ходом коня (то есть по диагонали прямоугольника 1×2);
г) по диагонали прямоугольника <i>a</i>×<i>b</i> (<i>a</i> и <i>b</i> фиксированы).