Олимпиадные задачи по теме «Модуль числа» для 7 класса - сложность 2 с решениями
Модуль числа
НазадВ вершинах кубика написали числа от 1 до 8, а на каждом ребре – модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Докажите, что если для чисел<i>a</i>,<i>b</i>и<i>c</i>выполняются неравенства|<i>a</i>-<i>b</i>|$\ge$|<i>c</i>|,|<i>b</i>-<i>c</i>|$\ge$|<i>a</i>|,|<i>c</i>-<i>a</i>|$\ge$|<i>b</i>|, то одно из этих чисел равно сумме двух других.
По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел
равна 1. Найти эти числа.
Докажите, что если <i>a + b + c + d</i> > 0, <i>a > c</i>, <i>b > d</i>, то |<i>a + b</i>| > |<i>c + d</i>|.
Сто друзей, среди которых есть Петя и Вася, живут в нескольких городах. Петя узнал расстояние от своего города до города каждого из оставшихся 99 друзей и сложил эти 99 чисел. Аналогично поступил Вася. Петя получил 1000 км. Какое наибольшее число мог получить Вася? (Города считайте точками плоскости; если двое живут в одном и том же городе, расстояние между их городами считается равным нулю.)
По окружности стоит 6 чисел; каждое равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел равна 1.a) Найдите набор чисел, удовлетворяющий данному условию.б) Сколько различных таких наборов существует? Решения, получающиеся друг из друга поворотом окружности, считаются одинаковыми.