Олимпиадные задачи по теме «Дроби» для 11 класса - сложность 4 с решениями
Дроби
НазадНатуральные числа покрашены в <i>N</i> цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.
а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.
б) При каких <i>N</i> такая раскраска возможна?
Последовательность {<i>a<sub>n</sub></i>} строится следующим образом: <i>a</i><sub>1</sub> = <i>p</i> – простое число, имеющее ровно 300 ненулевых цифр, <i>a</i><sub><i>n</i>+1</sub> – период десятичной дроби <sup>1</sup>/<sub><i>a<sub>n</sub></i></sub>, умноженный на 2. Найдите число <i>a</i><sub>2003</sub>.
Докажите, что существует бесконечно много натуральных <i>n</i>, для которых числитель несократимой дроби, равной 1 + ½ + ... + <sup>1</sup>/<sub><i>n</i></sub>, не является степенью простого числа с натуральным показателем.
На доске написаны <i>N</i> ≥ 9 различных неотрицательных чисел, меньших единицы. Оказалось, что для любых восьми различных чисел с доски на ней найдётся такое девятое, отличное от них, что сумма этих девяти чисел целая. При каких <i>N</i> это возможно?
Предположим, что цепные дроби <img width="400" align="MIDDLE" border="0" src="/storage/problem-media/61331/problem_61331_img_2.gif"> сходятся. Согласно задаче <a href="https://mirolimp.ru/tasks/161330">161330</a>, они будут сходиться к корням многочлена <i>x</i>² – <i>px + q</i> = 0. С другой стороны к тем же корням будут сходиться и последовательности, построенные по методу Ньютона (см. задачу <a href="https://mirolimp.ru/tasks/161328">161328</a>): <i>x</i><sub><i>n</i>+1</sub> = <i>x<sub>n</sub></i> – <img width="98" height="55" align="MIDDLE" border="0" src="/sto...
Докажите, что для чисел {<i>x<sub>n</sub></i>} из задачи <a href="https://mirolimp.ru/tasks/161297">161297</a> можно в явном виде указать разложения в цепные дроби: <i>x</i><sub><i>n</i>+1</sub> = [1;<img width="61" height="62" align="MIDDLE" border="0" src="/storage/problem-media/61316/problem_61316_img_2.gif">].
Оцените разность |<i>x<sub>n</sub></i> – <img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/61316/problem_61316_img_3.gif">|.
Докажите, что для любых целых чисел <i>p</i> и <i>q</i> (<i>q</i> ≠ 0), справедливо неравенство <img align="MIDDLE" src="/storage/problem-media/60621/problem_60621_img_2.gif">