Олимпиадные задачи по теме «Арифметические действия. Числовые тождества» - сложность 3-4 с решениями
Арифметические действия. Числовые тождества
НазадСуществуют ли три попарно различных ненулевых целых числа, сумма которых равна нулю, а сумма тринадцатых степеней которых является квадратом некоторого натурального числа?
<strong>Условие 1:</strong>Среди чисел<i>a</i>,<i>b</i>,<i>c</i>есть два одинаковых. А оставшееся число -- другое. Составьте такое арифметическое выражение из букв<i>a</i>,<i>b</i>,<i>c</i>, знаков +, -, ×, : и скобок, чтобы в результате вычислений получилось это число. (Скобки, знаки и буквы можно использовать любое количество раз.)
<strong>Условие 2:</strong>Среди чисел<i>a</i>,<i>b</i>,<i>c</i>есть два одинаковых. А оставшееся число -- другое. Составьте такое арифметическое выражение из букв<i>a</i>,<i>b</i>,<i>c</i>, знаков +, -, ×, : и скобок, чтобы в результате вычислений получилось это число. (Скобки, знаки и буквы...
Задано правило, которое каждой паре чисел <i>x</i>, <i>y</i> ставит в соответствие некоторое число <i>x*y</i>, причём для любых <i>x, y, z</i> выполняются тождества:
1) <i>x</i>*<i>x</i> = 0,
2) <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i>*<i>y</i>) + <i>z</i>.
Найдите 1993*1932.
Существует ли такое натуральное число <i>M</i>, что никакое натуральное число, десятичная запись которого состоит лишь из нулей и не более чем 1988 единиц, не делится на <i>M</i>?
В некотором государстве сложение и вычитание обозначаются знаками "!" и "?", но вам неизвестно, какой знак какой операции соответствует. Каждая операция применяется к двум числам, но про вычитание вам неизвестно, вычитается левое число из правого или правое из левого. К примеру, выражение $a?b$ обозначает одно из следующих: $a - b, b - a$ или $a + b$. Вам неизвестно, как записываются числа в этом государстве, но переменные $a, b$ и скобки есть и используются как обычно. Объясните, как с помощью них и знаков "!", "?" записать выражение, которое гарантированно равно $20a - 18b$.
Докажите, что можно найти бесконечно много таких пар целых чисел, что в десятичной записи каждого числа все цифры не меньше 7 и произведение чисел каждой пары – тоже число, где все цифры не меньше 7.
Существуют ли такие натуральные числа <i>a, b, c, d</i>, что <sup><i>a</i></sup>/<sub><i>b</i></sub> + <sup><i>c</i></sup>/<sub><i>d</i></sub> = 1, <sup><i>a</i></sup>/<sub><i>d</i></sub> + <sup><i>c</i></sup>/<sub><i>b</i></sub> = 2008?