Олимпиадные задачи по математике для 9-11 класса - сложность 2 с решениями
Митя купил на день рождения круглый торт диаметром 36 сантиметров и 13 тоненьких свечек. Мите не нравится, когда свечки стоят слишком близко, поэтому он хочет поставить их на расстоянии не меньше 10 сантиметров друг от друга. Поместятся ли все свечки на торте?
В прямоугольном треугольнике <i>ABC</i> с прямым углом <i>C</i> провели биссектрисы <i>AK</i> и <i>BN</i>, на которые опустили перпендикуляры <i>CD</i> и <i>CE</i> из вершины прямого угла. Докажите, что длина отрезка <i>DE</i> равна радиусу вписанной окружности.
Четырёхугольник <i>ABCD</i>, в котором <i>AB = BC</i> и <i>AD = CD</i>, вписан в окружность. Точка <i>M</i> лежит на меньшей дуге <i>CD</i> этой окружности. Прямые <i>BM</i> и <i>CD</i> пересекаются в точке <i>P</i>, а прямые <i>AM</i> и <i>BD</i> – в точке <i>Q</i>. Докажите, что <i>PQ || AC</i>.
Пусть <i>C</i> – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке <i>B</i>, а касательная в <i>C</i> к β пересекает α в точке <i>A</i>, причём <i>A</i> и <i>B</i> отличны от <i>C</i>, и угол <i>ACB</i> тупой. Прямая <i>AB</i> вторично пересекает α и β в точках <i>N</i> и <i>M</i> соответственно. Докажите, что 2<i>MN < AB</i>.