Олимпиадные задачи по математике для 4-7 класса

Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.

Из любого ли натурального числа <i>A</i> при помощи таких операций можно получить число <i>A</i> + 1?

(Если стирается единица в самом начале числа, а за ней сразу идут нули, то эти нули тоже стираются.)

На доску записали числа $1$, $2$, ..., $100$. Далее за ход стирают любые два числа $a$ и $b$, где $a\geqslant b>0$, и пишут вместо них одно число $[a/b]$. После $99$ ходов на доске останется одно число. Каким наибольшим оно может быть? (Напомним, что $[x]$ — это наибольшее целое число, не превосходящее $x$.)

В ряд лежат 100 камней: чёрный, белый, чёрный, белый, ..., чёрный, белый. Одной операцией либо выбирают два чёрных камня, между которыми лежат только белые камни, и перекрашивают все эти белые камни в чёрный цвет, либо выбирают два белых камня, между которыми лежат только чёрные камни, и перекрашивают все эти чёрные камни в белый цвет. Можно ли за несколько таких операций получить ряд, в котором идут сначала 50 чёрных камней, а потом 50 белых?

В каждую клетку доски $8\times 8$ вписано натуральное число так, что выполнено условие: если из одной клетки в другую можно перейти одним ходом коня, то отношение чисел в этих двух клетках является простым числом. Могло ли оказаться, что в какую-то клетку вписано число $5$, а в какую-то другую – число $6$?

Докажите, что в прямоугольном треугольнике с углом $30$ градусов одна биссектриса в два раза короче другой.

Можно ли расставить в клетках таблицы $6\times 6$ числа, среди которых нет одинаковых, так, чтобы в каждом прямоугольнике $1\times 5$ (как вертикальном, так и горизонтальном) сумма чисел была равна 2022 или 2023?

Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM.<img src="/storage/problem-media/66548/problem_66548_img_2.png">

Царь пообещал награду тому, кто сможет на каменистом пустыре посадить красивый фруктовый сад. Об этом узнали два брата. Старший смог выкопать 18 ям (см. рис. слева). Больше нигде не удалось, только все лопаты сломал. Царь рассердился и посадил его в темницу. Тогда младший брат Иван предложил разместить яблони, груши и сливы в вершинах равных треугольников (см. рис. справа), а остальные ямы засыпать.

<img src="/storage/problem-media/66544/problem_66544_img_2.png">

Царь ответил так:

— Хорошо, если деревьев каждого вида будет ровно по три и они будут расти в вершинах равных треугольников, выйдет красиво. Но три вида — слишком мало. Если кроме яблонь, груш и слив будут ещё и абрикосы — отпущу брата. Если добавишь пятый вид — черешню — заплачу за работу. Мне ещё миндаль нр...

В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AA'</i> и <i>BB'</i>. Точка <i>O</i> – центр окружности, описанной около треугольника <i>ABC</i>. Докажите, что расстояние от точки <i>A'</i> до прямой <i>B'</i> равно расстоянию от точки <i>B'</i> до прямой <i>A'</i>.

Вокруг круглого озера через равные промежутки растут 2019 деревьев: 1009 сосен и 1010 ёлок. Докажите, что обязательно найдется дерево, рядом с которым растёт сосна и с другой стороны от которого через одно дерево тоже растёт сосна.

Сеня не умеет писать некоторые буквы и всегда в них ошибается. В слове ТЕТРАЭДР он сделал бы пять ошибок, в слове ДОДЕКАЭДР – шесть, а в слове ИКОСАЭДР – семь. А сколько ошибок он сделает в слове ОКТАЭДР?

Незнайка выписал семь двузначных чисел в порядке возрастания. Затем одинаковые цифры заменил одинаковыми буквами, а разные – разными. Получилось вот что: ХА, АЙ, АХ, ОЙ, ЭМ, ЭЙ, МУ. Докажите, что Незнайка что-то перепутал.

Замените в выражении  <i>AB<sup>C</sup> = DE<sup>F</sup></i>  буквы цифрами так, чтобы равенство стало верным, использовав каждую цифру от 1 до 6 ровно один раз.

(<i>AB<sup>C</sup></i> – двузначное число из цифр <i>A</i> и <i>B</i>, возведённое в степень <i>C</i>. Достаточно привести один способ замены.)

У Вики есть четыре фигурки, у Алины есть квадрат, а у Полины есть квадрат другого размера. Объединившись, Алина и Вика могут сложить квадрат, используя все свои пять фигурок. Может ли оказаться так, что Полина и Вика также смогут сложить квадрат, используя все свои пять фигурок? (Квадраты складываются без просветов и наложений.)

Дан квадрат <i>ABCD</i>. На продолжении диагонали <i>AC</i> за точку <i>C</i> отмечена такая точка <i>K</i>, что  <i>BK = AC</i>.  Найдите угол <i>BKC</i>.

Разрежьте фигуру на двенадцать одинаковых частей. <div align="center"><img src="/storage/problem-media/65975/problem_65975_img_2.gif"></div>

Разрежьте фигуру, изображённую на рисунке, на две равные части. <div align="center"><img src="/storage/problem-media/65925/problem_65925_img_2.gif"></div>

В квадрате 10×10 все клетки левого верхнего квадрата 5×5 закрашены чёрным цветом, а остальные клетки – белым. На какое наибольшее количество многоугольников можно разрезать (по границам клеток) этот квадрат так, чтобы в каждом многоугольнике чёрных клеток было в три раза меньше, чем белых? (Многоугольники не обязаны быть равными или даже равновеликими.)

По кругу стоят мальчики и девочки (есть и те, и другие), всего 20 детей. Известно, что у каждого мальчика сосед по часовой стрелке – ребёнок в синей футболке, а у каждой девочки сосед против часовой стрелки – ребёнок в красной футболке. Можно ли однозначно установить, сколько в круге мальчиков?

На медиане <i>AM</i> треугольника <i>ABC</i> нашлась такая точка <i>K</i>, что  <i>AK = BM</i>.  Кроме того,  ∠<i>AMC</i> = 60°.  Докажите, что  <i>AC = BK</i>.

Квадраты <i>ABCD</i> и <i>BEFG</i> расположены так, как показано на рисунке. Оказалось, что точки <i>A, G</i> и <i>E</i> лежат на одной прямой.

Докажите, что тогда точки <i>D, F</i> и <i>E</i> также лежат на одной прямой. <div align="center"><img src="/storage/problem-media/65639/problem_65639_img_2.png"></div>

Сорок детей водили хоровод. Из них 22 держали за руку мальчика и 30 держали за руку девочку. Сколько девочек было в хороводе?

Аня захотела вписать в каждую клетку таблицы 5×8 по одной цифре таким образом, чтобы каждая цифра встречалась ровно в четырёх рядах. (Рядами мы считаем как столбцы, так и строчки таблицы.) Докажите, что у неё ничего не получится.

Будем называть клетчатый многоугольник <i>выдающимся</i>, если он не является прямоугольником и из нескольких его копий можно сложить подобный ему многоугольник. Например, уголок из трёх клеток – выдающийся многоугольник (см. рис.). <div align="center"><img src="/storage/problem-media/65461/problem_65461_img_2.gif"></div>  а) Придумайте выдающийся многоугольник из четырёх клеток.   б) При каких  <i>n</i>> 4  существует выдающийся многоугольник из<i>n</i>клеток?

Верно ли, что любое натуральное число можно умножить на одно из чисел 1, 2, 3, 4 или 5 так, чтобы результат начинался на цифру 1?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка