Олимпиадные задачи по математике для 11 класса - сложность 2 с решениями

В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.

Существует ли вписанный в окружность $N$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов, если

  а)  $N$ = 19;

  б)  $N$ = 20?

Существует ли вписанный в окружность $19$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов?

Докажите, что любая натуральная степень многочлена  <i>P</i>(<i>x</i>) = <i>x</i><sup>4</sup> + <i>x</i>³ – 3<i>x</i>² + <i>x</i> + 2  имеет хотя бы один отрицательный коэффициент.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка